Mathematics Asked on December 21, 2021
Welcome to MSE.
Test the consistency of the equations by substituting the given solutions into the first equation.
Using maxima to do the algebra. Equations $(1)$ to $(4)$ and $(11)$ are equal to zero.
E1 : -h/(2*m) *(a^2*b0 - 4*a *b1 + 6*b2) - Z*e^2*b1 - E*b0;
E2 : -h/(2*m) *(a^2*b1 - 6*a*b2) - Z*e^2*b2 - E*b1;
E3 : -h/(2*m) *(-2*a*b0 + 2*b1) - Z*e^2*b0;
E4 : -h/(2*m) *(a^2*b2) - E*b2;
sE : E = -Z^2*e^2/(18*a0);
sa0 : a0 = h^2/(m*e^2);
sa : a = Z/(3*a0);
sb0 : b0 = 27;
sb1 : b1 = 18*Z/a0;
sb2 : b2 = 2*Z^2/a0^2;
AllIntoEqn1 : subst(sa0,subst(sE,subst(sa,subst(sb2,subst(sb1,subst(sb0,E1))))));
SolveForh : solve(AllIntoEqn1,[h]);
$$-{it b_1},e^2,Z-{it b_0},E-{{left(6,{it b_2}-4,a, {it b_1}+a^2,{it b_0}right),h}over{2,m}} tag{1}$$
$$-{it b_2},e^2,Z-{it b_1},E-{{left(a^2,{it b_1}-6,a, {it b_2}right),h}over{2,m}} tag{2}$$
$$-{it b_0},e^2,Z-{{left(2,{it b_1}-2,a,{it b_0}right),h }over{2,m}} tag{3}$$
$$-{it b_2},E-{{a^2,{it b_2},h}over{2,m}} tag{4}$$
$$E=-{{e^2,Z^2}over{18,{it a_0}}} tag{5}$$
$${it a_0}={{h^2}over{e^2,m}} tag{6}$$
$$a={{Z}over{3,{it a_0}}} tag{7}$$
$${it b_0}=27 tag{8}$$
$${it b_1}=-{{18,Z}over{{it a_0}}} tag{9}$$
$${it b_2}={{2,Z^2}over{{it a_0}^2}} tag{10}$$
Substituting equations $(5)$ to $(10)$ into $(1)$ , (AllIntoEqn1 command) results in equation $(11)$.
$${{39,e^4,m,Z^2}over{2,h^2}}-{{39,e^4,m,Z^2}over{2,h^3}} tag{11}$$
Solving equation $(11)$ for h gives equation $(12)$.
$$h=1 tag{12}$$
This gives an incorrect value for $hbar$.
There seems to be something wrong with the equations.
The powers of h in the denominators of $(11)$ don't match.
Section $2$ : @Luka fix ${hbar}^2$
/* h^2 */
E1 : -h^2/(2*m) *(a^2*b0 - 4*a *b1 + 6*b2) - Z*e^2*b1 - E*b0$
tex(%)$
E2 : -h^2/(2*m) *(a^2*b1 - 6*a*b2) - Z*e^2*b2 - E*b1$
tex(%)$
E3 : -h^2/(2*m) *(-2*a*b0 + 2*b1) - Z*e^2*b0$
tex(%)$
E4 : -h^2/(2*m) *(a^2*b2) - E*b2$
tex(%)$
sE : E = -Z^2*e^2/(18*a0)$
tex(%)$
sa0 : a0 = h^2/(m*e^2)$
tex(%)$
sa : a = Z/(3*a0)$
tex(%)$
sb0 : b0 = 27$
tex(%)$
sb1 : b1 = -18*Z/a0$
tex(%)$
sb2 : b2 = 2*Z^2/a0^2$
tex(%)$
AllIntoEqn1 : subst(sa0,subst(sE,subst(sa,subst(sb2,subst(sb1,subst(sb0,E1))))))$
tex(%)$
$$-{it b_1},e^2,Z-{it b_0},E-{{left(6,{it b_2}-4,a, {it b_1}+a^2,{it b_0}right),h^2}over{2,m}} tag{1b}$$
$$-{it b_2},e^2,Z-{it b_1},E-{{left(a^2,{it b_1}-6,a, {it b_2}right),h^2}over{2,m}} tag{2b}$$
$$-{it b_0},e^2,Z-{{left(2,{it b_1}-2,a,{it b_0}right),h^2 }over{2,m}} tag{3b}$$
$$-{it b_2},E-{{a^2,{it b_2},h^2}over{2,m}} tag{4b}$$
$$E=-{{e^2,Z^2}over{18,{it a_0}}} tag{5b}$$
$${it a_0}={{h^2}over{e^2,m}} tag{6b}$$
$$a={{Z}over{3,{it a_0}}} tag{7b}$$
$${it b_0}=27 tag{8b}$$
$${it b_1}=-{{18,Z}over{{it a_0}}} tag{9b}$$
$${it b_2}={{2,Z^2}over{{it a_0}^2}} tag{10b}$$
$$0 tag{11b}$$
The given solutions are consistent with equation $(1)$.
Solve $b_1$ and $b_2$ in terms of $b_0$:
sb1 : facsum(solve(E3,b1));
tex(%);
sb2 : facsum(solve(E2,b2));
tex(%);
sb2 : facsum(subst(sb1,solve(E2,b2)));
tex(%);
$$ {it b_1}=-{{{it b_0},left(e^2,m,Z-a,h^2right)}over{ h^2}} tag{13}$$
$${it b_2}=-{{{it b_1},left(2,m,E+a^2,h^2right)}over{ 2,left(e^2,m,Z-3,a,h^2right)}} tag{14}$$
$$ {it b_2}={{{it b_0},left(2,m,E+a^2,h^2right),left( e^2,m,Z-a,h^2right)}over{2,h^2,left(e^2,m,Z-3,a,h^2 right)}} tag{15}$$
$b_0$ comes out as a linear multiple in the equations of $b_1$ , $b_2$ and thus equations $(1)$ to $(3)$ indicating it is arbitrary.
$boxed{b_0 : text{is arbitrary that's why it was coming out as }0.}$
Solving for a.
sa2 : solve(E4,a^2)$
tex(%);
subst(sE,sa2)$
tex(%);
subst(sa0,subst(sE,sa2))$
tex(%);
solve(subst(sa0,subst(sE,sa2)),a)$
tex(%);
From equation $(4)$
$$ a^2=-{{2,m,E}over{h^2}} tag{16}$$
Substitute E from $(5)$
$$ a^2={{e^2,m,Z^2}over{9,{it a_0},h^2}} tag{17}$$
Substitute $a_0$ from $(6)$
$$ a^2={{e^4,m^2,Z^2}over{9,h^4}} tag{18}$$
Solve for a.
$$ a=-{{e^2,m,Z}over{3,h^2}} , a={{e^2,m,Z}over{3,h^2}} tag{19}$$
From equation $(6)$ substitute $a_0$ take the positive value:
$$ a={{Z}over{3,a_0}} tag{20}$$
Solving for $b_1$ and $b_2$:
ra : a = Z/(3*a0)$
tex(%);
subst(ra,sb1)$
tex(%);
rb1 : subst(sa0,subst(ra,sb1))$
tex(%);
ratsimp(subst(sE,subst(ra,sb2)))$
tex(%);
subst(sa0,ratsimp(subst(sE,subst(ra,sb2))))$
tex(%);
$$a={{Z}over{3,{it a_0}}} tag{21}$$
$${it b_1}=-{{{it b_0},left(e^2,m,Z-{{h^2,Z}over{3, {it a_0}}}right)}over{h^2}} tag{22}$$
$$ {it b_1}=-{{2,{it b_0},e^2,m,Z}over{3,h^2}} tag{23}$$
$$ {it b_2}=-{{left(3,{it a_0},{it b_0},e^2,m-{it b_0} ,h^2right),Z^2}over{54,{it a_0}^2,h^2}} tag{24}$$
$$ {it b_2}=-{{{it b_0},e^4,m^2,Z^2}over{27,h^4}} tag{25}$$
Using equation $(6)$ for $a_0$
$$ {it b_1}=-{{2,{it b_0},Z}over{3,a_0}} tag{26}$$
$$ {it b_2}=-{{{it b_0},Z^2}over{27,{a_0}^2}} tag{27}$$
$b_2$ doesn't match? All the algebra is automated?.
Answered by arthur on December 21, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP