Mathematics Asked on November 9, 2021
We have the following result ($text{Li}_{n}$ being the polylogarithm):
$$tag{*}small{ int_0^1 log^2 (1-x) log^2 x log^3(1+x) frac{dx}{x} = -168 text{Li}_5(frac{1}{2}) zeta (3)+96 text{Li}_4(frac{1}{2}){}^2-frac{19}{15} pi ^4 text{Li}_4(frac{1}{2})+\ 12 pi ^2 text{Li}_6(frac{1}{2})+8 text{Li}_4(frac{1}{2}) log ^4(2)-2 pi ^2 text{Li}_4(frac{1}{2}) log ^2(2)+12 pi ^2 text{Li}_5(frac{1}{2}) log (2)+frac{87 pi ^2 zeta (3)^2}{16}+\ frac{447 zeta (3) zeta (5)}{16}+frac{7}{5} zeta (3) log ^5(2)-frac{7}{12} pi ^2 zeta (3) log ^3(2)-frac{133}{120} pi ^4 zeta (3) log (2)-frac{pi ^8}{9600}+frac{log ^8(2)}{6}- \ frac{1}{6} pi ^2 log ^6(2)-frac{1}{90} pi ^4 log ^4(2)+frac{19}{360} pi ^6 log ^2(2) }$$
This is extremely amazing: almost all other similar integrals are not expressible via ordinary polylogarithm.
The solution is however non-trivial. There are two methods: first is to find enough linear relations between similar integrals, once the rank is high enough, solving the system gives $(*)$; second method is to convert the integral into multiple zeta values, then use known linear relations between them. None of these methods can explain the result’s simplicity.
Question: Is there a simpler method to prove (*), or a conceptual explanation of its elegance?
Any thought is welcomed. Thank you very much.
I wrote a Mathematica package, it can calculate the integral in subject and many similar ones. The following command calculates $(*)$:
MZIntegrate[Log[1-x]^2*Log[x]^2*Log[1+x]^3/x, {x,0,1}]
It can also solve some other integrals. For example: here, here, here, here, here, here, here, here, here, here, here, here, here, here, here, here and here by directly typing them into the program. Also here, here, here, here, here, here, here, here, here after some elementary manipulations (e.g. tangent-half substitution); this and this after $xmapsto 2x/(1+x^2)$ .
The package can be obtained here. I hope it can benefit those interested in related integral/series.
Remarks on the question:
Some values of $text{Li}_k(z)$ are presented in the table $(1).$
begin{vmatrix} hspace{-5mu}^{overline{hspace{52pt}}}hspace{-10mu} &hspace{-10mu}^{overline{hspace{64pt}}}hspace{-10mu} &hspace{-10mu}^{overline{hspace{186pt}}}hspace{-10mu} &hspace{-10mu}^{overline{hspace{64pt}}}hspace{-8mu} \[-4pt] text{Li}_k(z) & z = -1 & z = dfrac12 & z = 1 \[-0pt] hspace{-5mu}^{overline{hspace{52pt}}}hspace{-10mu} &hspace{-10mu}^{overline{hspace{64pt}}}hspace{-10mu} &hspace{-10mu}^{overline{hspace{186pt}}}hspace{-10mu} &hspace{-10mu}^{overline{hspace{64pt}}}hspace{-8mu} \[-2pt] k=1 & -log(2) & log(2) & infty \[4pt] k=2 & -dfrac{pi^2}{12} & dfrac{pi^2}{12} - dfrac12 log^2(2) & dfrac{pi^2}{6} \[4pt] k=3 & -dfrac34 zeta(3) & -dfrac1{12} pi^2 log(2) + dfrac16 log^3(2) + dfrac{21}{24} zeta(3)) & zeta(3) \[4pt] k=4 & -dfrac{7 pi^4}{720} & text{Li}_4left(dfrac12right) & dfrac{pi^4}{90} \[4pt] k=5 & -dfrac{15}{16} zeta(5) & text{Li}_5left(dfrac12right) & zeta(5)\[-2pt] hspace{-7mu}___________hspace{-9mu} &hspace{-9mu}_____________hspace{-9mu} &hspace{-9mu} _____________________________________hspace{-9mu} & hspace{-11mu}_____________hspace{-5mu} tag1 end{vmatrix}
Also, are known the next antiderivatives below.
$$intdfrac{log (1-x)log^2 (x)}x,text dx = -2,text{Li}_4(x)+2text{Li}_3(x)log(x)-text{Li}_2(x)log^2(x) + text{const},tag2$$
$$begin{align} &intdfrac{log^3(1+x)}{1-x},text dx = -6text{ Li}_4dfrac {1+x}2 +6text{ Li}_3dfrac{1+x}2log(1+x)\[4pt] &-3text{Li}_2dfrac{1+x}2log^2(1+x) - logdfrac{1-x}2log^3(1+x)+text{const}, end{align}tag3$$
$$begin{align} &intdfrac{log^2 (1+x) log(1-x)}{1+x},text dx = -2text{ Li}_4dfrac{1+x} 2 +2text{ Li}_3 dfrac {1+x} 2 log(1+x)\[4pt] &-text{Li}_2 dfrac{1+x} 2log^2(1+x)+dfrac13log(2)log^3(1+x)+text{const}. end{align}tag4$$
begin{align} &int_0^1 log(1-x) log^3(1+x),frac{log (1-x) log^2 (x)}{x},text dx \[5mm] &overset{IBP(2)}{=!=!=!=}, log (1-x) log^3(1+x) left(-2,text{Li}_4(x)+2text{Li}_3(x)log(x)-text{Li}_2(x)log^2(x)right)bigg|_0^1\[4pt] &-int_0^1 left(-2,text{Li}_4(x)+2text{Li}_3(x)log(x) -text{Li}_2(x)log^2(x)right) frac{log^3(1+x)}{1-x},text dx\[4pt] &-3int_0^1 left(-2,text{Li}_4(x)+2text{Li}_3(1+x)log(x) -text{Li}_2(x)log^2(x)right) frac{log (1- x) log^2 (1+x)}{1+x} ,text dx\[4pt] & overset{(3),(4)}{=!=!=!=}, int_0^1 left(-2,text{Li}_4(x) + 2text{Li}_3(x)log(x) - text{Li}_2(x)log^2(x)right)text{ d}Bigl(log(1-x)log^3(1+x)Bigr), end{align} without suitable continuation.
Answered by Yuri Negometyanov on November 9, 2021
Here are some ideas towards explaining the form of the right hand side. I'm a bit stuck and my main approach hasn't worked out. This may just be rephrasing things in terms of other log-integrals, but hopefully this is a useful way of looking at the problem.
Taking the integral $$ I = int_0^1 log^2(1-x) log^2(x) log^3(1+x) frac{dx}{x} $$ we can also rewrite this as $$ I = int_0^infty log^2(1-e^{-x}) log^2(e^{-x}) log^3(1+e^{-x}) ; dx $$ which is suited for interpretation as a Mellin transform. Specifically, the power of $x$, is controlled by the power on $log(x)$ in the original integral format as $$ I = int_0^infty x^2 log^2(1-e^{-x})log^3(1+e^{-x}) ; dx $$ according to Mathematica we have in general a result for the Mellin transform of the other components $$ mathcal{M}[log^n(1pm e^{-x})](s) = (-1)^n n! Gamma(s) S_{s,n}(mp 1) $$ invoking the Neilsen Generalisation of the polylogarithm, $S_{s,n}$. This does recreate the series expansion for $log(1+e^{-x})$ but the series for $log(1-e^{-x})$ has a $log(x)$ term, which might be causing a problem.
We could toy with the idea of a formal series via the Ramanujan Master Theorem, using these Mellin transforms $$ log^n(1pm e^{-x}) = sum_{k=0}^infty frac{(-1)^{k+n} n!}{k!} S_{-k,n}(mp 1)x^k $$ and then the Cauchy product $$ log^a(1 + e^{-x})log^b(1 - e^{-x}) = left( sum_{k=0}^infty frac{(-1)^{k+a} a!}{k!} S_{-k,a}(-1)x^k right)left( sum_{k=0}^infty frac{(-1)^{k+b} b!}{k!} S_{-k,b}(1)x^k right) $$ $$ log^a(1 + e^{-x})log^b(1 - e^{-x}) = sum_{k=0}^infty left(sum_{l=0}^k frac{(-1)^{a+b+k} a! b!}{l!(k-l)!} S_{-l,a}(-1) S_{l-k,b}(1)right) x^k $$ alternatively $$ log^a(1 + e^{-x})log^b(1 - e^{-x}) = sum_{k=0}^infty frac{(-1)^k}{k!} left(sum_{l=0}^k (-1)^{a+b} a! b! binom{k}{l} S_{-l,a}(-1) S_{l-k,b}(1)right) x^k $$ plausibly leading to (via RMT) $$ mathcal{M}left[ log^a(1 + e^{-x})log^b(1 - e^{-x})right](s) = Gamma(s) sum_{l=0}^{-s} (-1)^{a+b} a! b! binom{-s}{l} S_{-l,a}(-1) S_{l-k,b}(1) $$ then we would conceptually have (with some dodgy negative parts) an answer for the integral as a sum over (four?) pairs of generalized Polylogs, specifically in the case that $s=3$.
This motivates an expression in terms of pairs of $S_{n,k}(z)$, we can guess a term and quickly find $$ -8cdot3 cdot 19 S_{2,2}(1)S_{1,3}(-1) = -frac{19}{15} pi ^4 text{Li}_4left(frac{1}{2}right)-frac{133}{120} pi ^4 zeta (3) log (2)+frac{19 pi ^8}{1350}+frac{19}{360} pi ^6 log ^2(2)-frac{19}{360} pi ^4 log ^4(2) $$ this covers a few of the terms in your expression R.H.S. It is likely that other terms contribute to $pi^8$ for example. I can't get an explicit value for $S_{2,3}(-1)$ to explore this further, but I would assume this holds a $mathrm{Li}_5(1/2)$ term among others, and the other factor is $S_{1,2}(1) = zeta(3)$. Perhaps your linear combinations method can be rephrased in terms of the generalized polylogarithm?
Answered by Benedict W. J. Irwin on November 9, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP