Mathematics Asked on December 6, 2021
Prove that $mathbb{Z}[i]/langle 2+3irangle $ is a finite field.
Hi. I can’t try a few steps in the next solution
$$mathbb{Z}[i]/langle 2+3irangle simeq mathbb{Z}[x]/langle 1+x^2,2+3xrangle$$ and $9(1+x^2)+(2-3x)(2+3x)=13$ then $13in langle 1+x^2,2+3xrangle $. Thus $$mathbb{Z}[x]/langle 1+x^2,2+3xrangle=mathbb{Z}/langle 13,1+x^2,2+3xrangle \
simeq mathbb{Z}_{13}[x]/langle 1+x^2,2+3xrangle simeq mathbb{Z}_{13}$$
The last isomorphism induced by $xmapsto 8$ (check $langle 1+x^2,2+3xrangle=langle x-8rangle $ in $mathbb{Z}_{13}[x]$)
Therefore $mathbb{Z}[i]/langle 2+3irangle simeq mathbb{Z}_{13}$ finite field.
Question 1. Why $mathbb{Z}[i]/langle 2+3iranglesimeq mathbb{Z}[x]/langle1+x^2,2+3xrangle$?
I have this: Let $$f:mathbb{Z}[x]to mathbb{Z}[i]/langle 2+3irangle $$ with $f(p(x))=p(i)+langle 2+3irangle $ homomorphism with $ker(f)=langle 1+x^2,2+3xrangle $ then $$mathbb{Z}[x]/langle 1+x^2,2+3xrangle simeq mathbb{Z}[i]/langle 2+3irangle $$It is correct?
Question 2. Why $mathbb{Z}/langle 13,1+x^2,2+3xrangle simeq mathbb{Z}_{13}[x]/langle 1+x^2,2+3xrangle $?
Question 3. Why $langle 1+x^2,2+3xrangle=langle x-8rangle$?
Question 1: We have $Bbb Z[i]simeq Bbb Z[x]/langle x^2+1rangle$. And the third isomorphism theorem says that when we are dividing out by first $x^2+1$, and then $2+3x$, we are allowed to divide out but both of them simultaneously.
Question 2: Again justified by the third isomorphism theorem, dividing out by $13$ before the other generators.
Question 3: Here we have $$ 9(2+3x)=18+27x=-8+x $$ So $langle x^2+1,2+3xrangle$ contains $x-8$. Now also note that $$ 3(x-8)=3x-24=3x+2\ (x-8)^2+3(x-8)=x^2-16x+64 +3x-24=x^2+1 $$ So $langle x-8rangle$ contains both $x^2+1$ and $2+3x$. Since each ideal contains the generators of the other ideal, the two ideals must be equal.
Answered by Arthur on December 6, 2021
Question 1:
Yes, this is correct.
Question 2:
You have a typo here. It should be
$$ mathbb{Z}[x]/langle 13,1+x^2,2+3xrangle cong mathbb{Z}_{13}[x]/langle 1+x^2,2+3xrangle. $$ And this is proved by the isomorphism (verify this is an isomorphism): $$ fleft(p(x)+langle 13,1+x^2,2+3xrangleright):=bar p(x)+langle1+x^2,2+3xrangle, $$ where $bar p(x)$ is the polynomial in $mathbb Z_{13}[x]$ whose coefficients are the images of the coefficients of $p(x)$ under the canonical morphism $mathbb Zrightarrowmathbb Z_{13}$.
Question 3:
We verify these two ideals are equal: $langle1+x^2,2+3xrangle=langle x-8ranglesubseteqmathbb Z_{13}[x]$.
First: $1+x^2=x^2-64=(x-8)(x+8)$, and $2+3x=-24+3x=3(x-8)$, in $mathbb Z_{13}[x]$, so $langle1+x^2,2+3xranglesubseteqlangle x-8rangle$.
Conversely, $x-8=27x+18=9(3x+2)$ in $mathbb Z_{13}[x]$, so $langle1+x^2,2+3xranglesupseteqlangle x-8rangle$.
Therefore the two ideals are equal.
Hope this helps.
Answered by awllower on December 6, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP