TransWikia.com

Proof that $ frac{2^{-x}-1}{x} = sum_{n=0}^{infty} frac{ (-1)^{n+1}x^n(ln2)^{n+1}}{(n+1)!} $

Mathematics Asked by Sugaku on February 14, 2021

If
$$2^x = sum_{n=0}^{infty} frac{(xln(2))^n}{n!} hspace{1cm} forall x in mathbb{R},$$
Proof that:
$$ frac{2^{-x}-1}{x} = sum_{n=0}^{infty} frac{ (-1)^{n+1}x^n(ln2)^{n+1}}{(n+1)!} $$

I did the following:

begin{align*}
&2^x = sum_{n=0}^{infty} frac{(xln(2))^n}{n!} \
Rightarrow quad & 2^{-x} = frac{1}{sum_{n=0}^{infty} frac{(xln(2))^n}{n!}} \
Rightarrow quad & 2^{-x}-1 = frac{1}{sum_{n=0}^{infty} frac{(xln(2))^n}{n!}} -1 \
Rightarrow quad & dfrac{2^{-x}-1}{x} = frac{frac{1}{sum_{n=0}^{infty} frac{(xln(2))^n}{n!}} -1}{x} \
Rightarrow quad & frac{2^{-x}-1}{x} = frac{1-sum_{n=0}^{infty} frac{(xln(2))^n}{n!}}{xsum_{n=0}^{infty} frac{(xln(2))^n}{n!}}
end{align*}

From this part I don’t know how to continue

3 Answers

Your series can be written:

$$sum_{n=0}^{infty} frac{left(-1right)^{n + 1} x^{n} ln{left(2 right)}^{n + 1}}{left(n + 1right)!}=sum_{n=0}^{infty} frac{x^{n} left(- ln{left(2 right)}right)^{n + 1}}{left(n + 1right)!}$$ being $(-1)^{n+1}=-1$ forall $ninBbb N$.

And rewriting

$$sum_{n=0}^{infty} frac{x^{n} left(- ln{left(2 right)}right)^{n + 1}}{left(n + 1right)!}=sum_{n=0}^{infty} frac{left(- x ln{left(2 right)}right)^{n + 1}}{x left(n + 1right)!}$$ Shift the series by $1$ you obtain:

$$sum_{n=0}^{infty} frac{left(- x ln{left(2 right)}right)^{n + 1}}{x left(n + 1right)!}=sum_{n=1}^{infty} frac{left(- x ln{left(2 right)}right)^{n}}{x n!}=sum_{n=1}^{infty} frac{left(- x ln{left(2 right)}right)^{n}}{x n!}= frac{displaystylesum_{n=1}^{infty} frac{left(- x ln{left(2 right)}right)^{n}}{n!}}{x}$$ (remember that $x$ it is a constant).

After, $$frac{sum_{n=1}^{infty} frac{left(- x ln{left(2 right)}right)^{n}}{n!}}x=frac{left(sum_{n=0}^{infty} frac{left(- x ln{left(2 right)}right)^{n}}{n!} + sum_{n=0}^{0} - frac{left(- x ln{left(2right)}right)^{n}}{n!}right)}{x}=frac{sum_{n=0}^{infty} frac{left(- x ln{left(2 right)}right)^{n}}{n!}-1}{x}=frac{e^{- x ln{left(2 right)}}-1}{x}$$ (you have an exponential series) i.e. $$frac{e^{- x ln{left(2 right)}}-1}{x}=frac{2^{-x}-1}{x}$$

Answered by Sebastiano on February 14, 2021

$$2^x = sum_{n=0}^{infty} dfrac{(xln(2))^n}{n!} $$

Proof: $$2^{-x} = sum_{n=0}^{infty} dfrac{(-xln(2))^n}{n!} $$

$$Rightarrow 2^{-1x} = 1 +sum_{n=1}^{infty} dfrac{(-1)^n(xln(2))^n}{n!} $$

$$Rightarrow 2^{-x} -1 = sum_{n=1}^{infty} dfrac{(-1)^n(xln(2))^n}{n!} $$

$$Rightarrow 2^{-x} -1 = sum_{n=0}^{infty} dfrac{(-1)^{n+1}(xln(2))^{n+1}}{(n+1)!} $$

$$Rightarrow dfrac{2^{-x} -1}{x} = sum_{n=0}^{infty} dfrac{(-1)^{n+1}x^nln(2)^{n+1}}{(n+1)!} $$

Answered by Kirito on February 14, 2021

We have

$$2^x = sum_{n=0}^{infty} dfrac{(xln(2))^n}{n!}$$

$$2^{-x} = sum_{n=0}^{infty} dfrac{(-x)^n(ln(2))^n}{n!}$$

$$2^{-x}-1 = -1+sum_{n=0}^{infty} dfrac{(-1)^nx^n(ln(2))^n}{n!}=sum_{n=0}^{infty} dfrac{(-1)^{n+1}x^{n+1}(ln(2))^{n+1}}{(n+1)!}$$

$$frac{2^{-x}-1}x =sum_{n=0}^{infty} dfrac{(-1)^{n+1}x^{n}(ln(2))^{n+1}}{(n+1)!}$$

Answered by user on February 14, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP