Mathematics Asked on December 15, 2021
Let $m : mathbb R^{d} to mathbb K$ measurable and $A: operatorname{dom}(A) to L^{p}(mathbb R^{d})$
such that $Af(x)=m(x)f(x)$ and $operatorname{dom}(A):={f in L^{p}(mathbb R^{d}):mf in L^{p}(mathbb R^{d})}$. Show that $A$ is a closed operator.
My proof:
Let $(f_{n})_{n in mathbb N}subseteq operatorname{dom}(A)$ with $f_{n} xrightarrow{L^{p}} f$ and $Af_{n} xrightarrow{ L^{p}} z$. Then by $L^{p}$ convergence there exists a measurable $A_{k}$ and a subsequence $(f_{n(k)})_{kin mathbb N}$ such that $mu(A_{k})=0$ and $f_{n(k)}(x)xrightarrow{k to infty} f(x),; forall x in A_{k}^{c}$.
Now we want to show that $mf=z$ a.e., thus consider
$$lvert lvert mf-zrvertrvert_{p}^{p}\=intlimits_{mathbb R^{d}}lvert m(x)f(x)-z(x)rvert^{p}dx\=intlimits_{A_{k}^{c}}lvert m(x)f(x)-z(x)rvert^{p}dx\=intlimits_{A_{k}^{c}}limlimits_{kto infty}lvert m(x)f_{n(k)}(x)-z(x)rvert^{p}dx\ =intlimits_{A_{k}^{c}}liminflimits_{kto infty}lvert m(x)f_{n(k)}(x)-z(x)rvert^{p}dx\ leq liminflimits_{kto infty} intlimits_{A_{k}^{c}}lvert m(x)f_{n(k)}(x)-z(x)rvert^{p}dx\leq liminflimits_{kto infty} intlimits_{mathbb R^{d}}lvert m(x)f_{n(k)}(x)-z(x)rvert^{p}dx \ =limlimits_{kto infty} intlimits_{mathbb R^{d}}lvert m(x)f_{n(k)}(x)-z(x)rvert^{p}dx=0.$$ Thus $mf = z$ a.e. and since $z in L^{p}$, it follows that $f in operatorname{dom}(T)$ and hence $A$ is closed.
The critical part of my proof was to use Fatou’s Lemma. Are there any other alternative ways to prove this and is my proof at all correct?
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP