Mathematics Asked by pico on November 16, 2021
starting with this:
$$R_{XX}(t_1, t_2) = 2 cos t_1 cos t_2 + sin t_1 sin t_2$$
The textbook say it should be reducible to this form:
$$R_{XX}(t_1, t_2) = cos(t_2 – t_2) + cos t_1 cos t_2$$
So I try to do the reduction using the following identities:
$$cos A cos B = frac{1}{2}cos(A-B) + frac{1}{2}cos(A+B)$$
$$sin A sin B = frac{1}{2}cos(A-B) – frac{1}{2}cos(A+B)$$
Here’s my work:
$$R_{XX}(t_1, t_2) = 2 cos t_1 cos t_2 + sin t_1 sin t_2$$
$$begin{aligned}R_{XX}(t_1, t_2) &= 2 (frac{1}{2}cos(t_1-t_2) + frac{1}{2}cos(t_1+t_2)) \ &+ frac{1}{2}cos(t_1 – t_2) – frac{1}{2}cos(t_1 + t_2)end{aligned}$$
$$begin{aligned}R_{XX}(t_1, t_2) &= cos(t_1-t_2) + cos(t_1+t_2)) \ &+ frac{1}{2}cos(t_1 – t_2) – frac{1}{2}cos(t_1 + t_2)end{aligned}$$
$$boxed{R_{XX}(t_1, t_2) = frac{3}{2}cos(t_1 – t_2) +frac{1}{2}cos(t_1+t_2)}$$
Any ideas why it doesn’t equal?
$$R_{XX}(t_1, t_2) = cos(t_2 – t_2) + cos t_1 cos t_2$$
HINT Use the trigonometric identity
$$cos(t_1-t_2)=cos t_1cos t_2+sin t_1sin t_2$$
Answered by Sameer Baheti on November 16, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP