TransWikia.com

product of sums: $R_{XX}(t_1, t_2) = cos(t_2 - t_2) + cos t_1 cos t_2$

Mathematics Asked by pico on November 16, 2021

starting with this:

$$R_{XX}(t_1, t_2) = 2 cos t_1 cos t_2 + sin t_1 sin t_2$$

The textbook say it should be reducible to this form:

$$R_{XX}(t_1, t_2) = cos(t_2 – t_2) + cos t_1 cos t_2$$


So I try to do the reduction using the following identities:

$$cos A cos B = frac{1}{2}cos(A-B) + frac{1}{2}cos(A+B)$$

$$sin A sin B = frac{1}{2}cos(A-B) – frac{1}{2}cos(A+B)$$


Here’s my work:

$$R_{XX}(t_1, t_2) = 2 cos t_1 cos t_2 + sin t_1 sin t_2$$

$$begin{aligned}R_{XX}(t_1, t_2) &= 2 (frac{1}{2}cos(t_1-t_2) + frac{1}{2}cos(t_1+t_2)) \ &+ frac{1}{2}cos(t_1 – t_2) – frac{1}{2}cos(t_1 + t_2)end{aligned}$$

$$begin{aligned}R_{XX}(t_1, t_2) &= cos(t_1-t_2) + cos(t_1+t_2)) \ &+ frac{1}{2}cos(t_1 – t_2) – frac{1}{2}cos(t_1 + t_2)end{aligned}$$

$$boxed{R_{XX}(t_1, t_2) = frac{3}{2}cos(t_1 – t_2) +frac{1}{2}cos(t_1+t_2)}$$

Any ideas why it doesn’t equal?

$$R_{XX}(t_1, t_2) = cos(t_2 – t_2) + cos t_1 cos t_2$$

example

One Answer

HINT Use the trigonometric identity

$$cos(t_1-t_2)=cos t_1cos t_2+sin t_1sin t_2$$

Answered by Sameer Baheti on November 16, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP