Mathematics Asked by Anastasiya-Romanova 秀 on February 15, 2021
A few days ago, I posted the following problems
Prove that
begin{equation}
int_0^{pi/2}ln^2(cos x),dx=frac{pi}{2}ln^2 2+frac{pi^3}{24}\[20pt]
-int_0^{pi/2}ln^3(cos x),dx=frac{pi}{2}ln^3 2+frac{pi^3}{8}ln 2 +frac{3pi}{4}zeta(3)
end{equation}
and the OP receives some good answers even I then could answer it.
My next question is finding the closed-forms for
begin{align}
int_0^{pi/4}ln^2(sin x),dxtag1\[20pt]
int_0^{pi/4}ln^2(cos x),dxtag2\[20pt]
int_0^1frac{ln t~lnbig(1+t^2big)}{1+t^2}dttag3
end{align}
I have a strong feeling that the closed-forms exist because we have nice closed-forms for
begin{equation}
int_0^{pi/4}ln(sin x) dx=-frac12left(C+fracpi2ln2right)\
text{and}\
int_0^{pi/4}ln(cos x) dx=frac12left(C-fracpi2ln2right).
end{equation}
The complete proofs can be found here.
As shown by Mr. Lucian in his answer below, the three integrals are closely related, so finding the closed-form one of them will also find the other closed-forms. How to find the closed-forms of the integrals? Could anyone here please help me to find the closed-form, only one of them, preferably with elementary ways (high school methods)? If possible, please avoiding contour integration and double summation. Any help would be greatly appreciated. Thank you.
Following the same approach as in this answer,
$$ begin{align} &int_{0}^{pi/4} log^{2} (2 sin x) dx = int_{0}^{pi/4} log^{2}(2) dx + 2 log 2 int_{0}^{pi/4}log(sin x) dx + int_{0}^{pi /4}log^{2}(sin x) dx \ &= frac{pi}{4} log^{2}(2) - log (2) left(G + frac{pi}{2} log (2) right) + int_{0}^{pi/4} log^{2}(sin x) dx \ &= int_{0}^{pi /4} left(x- frac{pi}{2} right)^{2} dx + text{Re} int_{0}^{pi/4} log^{2}(1-e^{2ix}) dx \ &= frac{7 pi^{3}}{192} + frac{1}{2} text{Im} int_{{color{red}{1}}}^{i} frac{log^{2}(1-z)}{z} dz \ &= frac{7 pi^{3}}{192} + frac{1}{2} text{Im} left(log^{2}(1-i) log(i) + 2 log(1-i) text{Li}_{2}(1-i) - 2 text{Li}_{3}(1-i) right) \ &= frac{7 pi^{3}}{192} + frac{1}{2} left(frac{pi}{8} log^{2}(2) - frac{pi^{3}}{32} + log(2) text{Im} text{Li}_{2}(1-i) - frac{pi}{2} text{Re} text{Li}_{2}(1-i)- 2 text{Im} text{Li}_{3}(1-i)right) . end{align}$$
Therefore,
$$ begin{align}int_{0}^{pi/4} log^{2}(sin x) dx &= frac{pi^{3}}{48} + G log(2)+ frac{5 pi}{16}log^{2}(2) + frac{log(2)}{2} text{Im} text{Li}_{2}(1-i) - frac{pi}{4} text{Re} text{Li}_{2}(1-i) \ &- text{Im} text{Li}_{3}(1-i) approx 2.0290341368 . end{align}$$
The answer could be further simplified using the dilogarithm reflection formula $$text{Li}_{2}(x) {color{red}{+}} text{Li}_{2}(1-x) = frac{pi^{2}}{6} - log(x) log(1-x) $$
and the fact that $$ text{Li}_{2}(i) = - frac{pi^{2}}{48} + i G.$$
EDIT:
Specifically, $$text{Li}_{2}(1-i) = frac{pi^{2}}{16} - i G - frac{i pi}{4} log(2). $$
So $$int_{0}^{pi /4} log^{2}(sin x) dx = frac{pi^{3}}{192} + Gfrac{ log(2)}{2} + frac{3 pi}{16} log^{2}(2) - text{Im} text{Li}_{3}(1-i).$$
Correct answer by Random Variable on February 15, 2021
A more self-contained solution
First note that
$$I=int_0^1frac{ln xln(1+x)}{1+x^2}dx=-sum_{n=0}^infty(-1)^nH_nint_0^1 x^{2n}ln xdx=sum_{n=0}^inftyfrac{(-1)^nH_n}{(2n+1)^2}.$$
We have here
$$int_0^1frac{x^{2n}}{1+x}dx=ln2+H_n-H_{2n}$$
$$=ln(2)+H_n-H_{2n+1}+frac1{2n+1}$$
Multiply both sides by $frac{(-1)^n}{(2n+1)^2}$ then $sum_{n=0}^infty$ we get
$$text{G}ln(2)+sum_{n=0}^inftyfrac{(-1)^nH_n}{(2n+1)^2}-sum_{n=0}^inftyfrac{(-1)^nH_{2n+1}}{(2n+1)^2}+underbrace{sum_{n=0}^inftyfrac{(-1)^n}{(2n+1)^3}}_{pi^3/32}$$
$$=int_0^1frac{1}{1+x}left(sum_{n=0}^inftyfrac{(-1)^nx^{2n}}{(2n+1)^2}right)dx=int_0^1frac{1}{1+x}left(Imfrac{text{Li}_2(ix)}{x}right)dx$$
$$int_0^1frac{1}{1+x}left(Imint_0^1-frac{iln y}{1-ixy}dyright)dx=int_0^1frac{1}{1+x}left(int_0^1-frac{ln y}{1+x^2y^2}dyright)dx$$
$$overset{xy=t}{=}int_0^1int_0^xfrac{ln(x/t)}{x(1+x)(1+t^2)}dtdx=int_0^1frac{1}{1+t^2}left(int_t^1frac{ln(x/t)}{x(1+x)}dxright)dt$$
$$=int_0^1frac{1}{1+t^2}left(text{Li}_2(-t)+frac12ln^2t+ln(2)ln t+frac12zeta(2)right)dt$$
$$=int_0^1frac{text{Li}_2(-t)}{1+t^2}dt+frac{pi^3}{32}-text{G}ln(2)+frac{pi^3}{48}$$
Therefore
$$sum_{n=0}^inftyfrac{(-1)^nH_n}{(2n+1)^2}=sum_{n=0}^inftyfrac{(-1)^nH_{2n+1}}{(2n+1)^2}+int_0^1frac{text{Li}_2(-t)}{1+t^2}dt-2text{G}ln(2)+frac{pi^3}{48}tag1$$
where
$$sum_{n=0}^inftyfrac{(-1)^nH_{2n+1}}{(2n+1)^2}=Imsum_{n=1}^inftyfrac{i^nH_{n}}{n^2}=-frac{pi}{16}ln^2(2)-frac12text{G}ln(2)+Imoperatorname{Li}_3(1+i)tag2$$
and
$$int_0^1frac{text{Li}_2(-t)}{1+t^2}dt=int_0^1frac{1}{1+t^2}left(int_0^1frac{tln x}{1+tx}dxright)dt$$
$$=int_0^1ln xleft(int_0^1frac{t}{(1+t^2)(1+tx)}dtright)dx$$
$$=int_0^1ln xleft(frac{pi}{4}frac{x}{1+x^2}+frac{ln(2)}{2}frac{1}{1+x^2}-frac{ln(1+x)}{1+x^2}right)dx$$
$$=-frac{pi^3}{192}-frac12text{G}ln(2)-int_0^1frac{ln xln(1+x)}{1+x^2}dx$$
Substitute $$int_0^1frac{ln xln(1+x)}{1+x^2}dx=3Imoperatorname{Li}_3(1+i)-frac{5pi^3}{64}-frac{3pi}{16}ln^2(2)-2text{G}ln(2)$$
we get
$$int_0^1frac{text{Li}_2(-x)}{1+x^2}dx=frac{7pi^3}{96}+frac{3pi}{16}ln^2(2)+frac32text{G}ln(2)-3Imoperatorname{Li}_3(1+i)tag3$$
Plug $(2)$ and $(3)$ in $(1)$ we finally get
$$I=sum_{n=0}^inftyfrac{(-1)^nH_n}{(2n+1)^2}=frac{3pi^3}{32}+frac{pi}8ln^2(2)-text{G}ln(2)-2Imoperatorname{Li_3}(1+i)$$
Answered by Ali Shadhar on February 15, 2021
The strategy in this post will be included in another paper.
A solution (in large steps) by Cornel Ioan Valean
In my opinion, this is a very magical & powerful way that manages to circumvent the necessity of using the already famous method proposed by Random Variable which I think most posts on MSE use it for such integrals. It's time for a new way to come in place and join the existing one!
In this post, we magically prove that $$int_0^1frac{log xlog(1+x^2)}{1+x^2}textrm{d}x=-frac{pi}{16} log ^2(2) - log (2)G-frac{pi ^3}{64}+2Imbiggr {operatorname{Li}_3left(frac{1+i}{2}right)biggr },$$ by wisely combining a result from the book, (Almost) Impossible Integrals, Sums, and Series, namely the special Fourier series (see eq. 3.284, page 244, and eq. 3.288, page 247), begin{equation} begin{aligned} small sum_{n=1}^{infty} (-1)^{n-1}left(psileft(frac{n+1}{2}right)-psileft(frac{n}{2}right)-frac{1}{n}right)sin(2nx)&small=sum_{n=1}^{infty} (-1)^{n-1}left(int_0^1 t^{n-1}frac{1-t}{1+t} textrm{d}tright)sin(2nx)\ &=-cot(x)log(cos(x)), end{aligned} end{equation} where $displaystyle 0< x<frac{pi}{2}$, and the Cornel's integral,
$$int_0^{pi/2} xfrac{log(cos x)}{sin x}textrm{d}x=2log(2)G-frac{pi}{8}log^2(2)-frac{5}{32}pi^3+4Imleft{text{Li}_3left(frac{1+i}{2}right)right},$$ already calculated in this post How can you approach $int_0^{pi/2} xfrac{ln(cos x)}{sin x}dx$.
Proof: We differentiate both sides of the Fourier series that leads to $$2 sum_{n=1}^{infty} (-1)^{n-1}left(int_0^1 t^{n-1}frac{1-t}{1+t} textrm{d}tright)ncos(2nx)=1+frac{log(cos(x))}{sin^2(x)},$$ and if we multiply both side by $x sin(x)$ and integrate from $x=0$ to $x=pi/2$, we arrive at $$int_0^{pi/2} xsin(x)textrm{d}x+int_0^{pi/2}xfrac{log(cos(x))}{sin(x)}textrm{d}x$$
$$=2 log (2)-1+2 log (2)underbrace{int_0^1 frac{log (x)}{1+x^2}textrm{d}x}_{displaystyle text{Trivial}}+frac{1}{2}underbrace{int_0^1 log (x) log left(1-x^2right)textrm{d}x}_{displaystyle text{Trivial}}$$ $$+frac{1}{2}underbrace{int_0^1frac{log (x) log left(1-x^2right)}{x^2}textrm{d}x}_{displaystyle text{Trivial}}-2underbrace{int_0^1frac{ log (x) log left(1-x^4right)}{1-x^4}textrm{d}x}_{displaystyle text{Beta function in disguise}}$$ $$+2underbrace{int_0^1frac{x^2 log (x) log left(1-x^4right)}{1-x^4}textrm{d}x}_{displaystyle text{Beta function in disguise}}+2color{blue}{int_0 ^1 frac{log (x) log(1+x^2)}{1+x^2}textrm{d}x},$$ from which the desired result follows.
Note the following values of the Beta function forms in disguise:
$$int_0^1 frac{log (x) log left(1-x^4right)}{1-x^4} textrm{d}x=frac{1}{16}int_0^1 frac{log(x)log (1-x)}{ x^{3/4}(1-x) } textrm{d}x$$ $$=frac{7 }{4}zeta (3)+frac{pi ^3}{32}-frac{3}{16}log (2)pi ^2-frac{pi }{4}G-frac{3}{2}log(2)G,$$ and $$int_0^1 frac{x^2log (x) log left(1-x^4right)}{1-x^4} textrm{d}x=frac{1}{16}int_0^1 frac{log(x)log (1-x)}{x^{1/4}(1-x)} textrm{d}x$$ $$=frac{7}{4} zeta (3)+frac{3}{2} log (2)G-frac{1}{4} pi G-frac{3}{16}log(2)pi^2-frac{pi ^3}{32}.$$
A note: this method can also be adjusted to extract other very difficult integrals, which is possible by further exploiting and developing ideas like the ones in the paper A symmetry-related treatment of two fascinating sums of integrals by C.I. Valean.
End of story
Answered by user97357329 on February 15, 2021
my approach to problem $(3)$: begin{align} I&=int_0^1frac{ln xln(1+x^2)}{1+x^2} dx=-2int_0^{pi/4}ln(tan x)ln(cos x) dx\ &=-2int_0^{pi/4}ln(sin x)ln(cos x) dx+2int_0^{pi/4}ln^2(cos x) dx\ &=-int_0^{pi/2}ln(sin x)ln(cos x) dx+2int_0^{pi/4}ln^2(cos x) dx\ &=-left(frac{pi}{2}ln^22-frac{pi^3}{48}right)+2left(frac7{192}pi^3+frac5{16}piln^22-frac12ln2~G-text{Im}operatorname{Li_3}(1+i)right)\ &=frac3{32}pi^3+frac{pi}8ln^22-ln2~G-2text{Im}operatorname{Li_3}(1+i) end{align}
note that we evaluated the first integral using the derivative of beta function and as follows: begin{align} J&=int_0^{pi/2}ln(sin x)ln(cos x) dx=frac18frac{partial^2}{partial{a}partial{b}}beta(a,b)Biggrvert_{ato1/2,~bto1/2}\ &=frac18beta(a,b)left(left(psi(a)-psi(a+b)right)left(psi(b)-psi(a+b)right)-psi^{(1)}(a+b)right)Biggrvert_{ato1/2,~bto1/2}\ &=frac18beta(1/2,1/2)left((psi(1/2)-psi(1))^2-psi^{(1)}(1)right)\ &=frac{pi}8left(4ln^22-zeta(2)right)\ &=frac{pi}2ln^22-frac{pi^3}{48} end{align}
Answered by Ali Shadhar on February 15, 2021
we can prove, using the same strategy of Random Variable, the following equality:
$$int_0^{pi/4}ln^2(cos x) dx=frac7{192}pi^3+frac5{16}piln^22-frac12ln2G-text{Im}operatorname{Li_3}(1+i)$$
proof :
begin{align*} ln(1+e^{2ix}) &= ln (e^{-ix}+e^{ix}) + ln(e^{ix}) \ &= ln(2cos x) + ix
end{align*}
squaring both sides and integrating, we get
$$int_0^{pi/4}ln^2(1+e^{2ix}) dx=int_0^{pi/4}(ln(2cos x)+ix)^2 dx$$ equating the real parts on both sides and rearranging the terms, we have:
begin{align*} int_0^{pi/4}ln^2(cos x) dx&=int_0^{pi/4}(x^2-ln^22) dx-2ln2int_0^{pi/4}ln(cos x) dx+text{Re}int_0^{pi/4}ln^2(1+e^{2ix}) dx\ &=frac{pi^3}{192}-frac{pi}{4}ln^22-2ln2left(frac12G-frac{pi}{4}ln2right)+text{Re}int_0^{pi/4}ln^2(1+e^{2ix}) dx\ &=frac{pi^3}{192}+frac{pi}{4}ln^22-ln2G+text{Re}int_0^{pi/4}ln^2(1+e^{2ix}) dx tag{1}\ end{align*} Evaluating the last integral: begin{align*} I&=text{Re}int_0^{pi/4}ln^2(1+e^{2ix}) dx=frac12text{Im}int_1^ifrac{ln^2(1+x)}{x} dx\ &=frac12text{Im}left(ln(-i)ln^2(1+i)+2ln(1+i)operatorname{Li_2}(1+i)-2operatorname{Li_3}(1+i)right)\ &=frac{pi^3}{32}+frac{pi}{16}ln^22+frac12ln2G-text{Im}operatorname{Li_3}(1+i)tag{2} end{align*} Plugging $(2)$ in $(1)$ we get our result.
note that we used: $$ln(-i)=-frac{pi}{2}i$$ $$ln(1+i)=frac12ln2+frac{pi}{4}i$$ $$operatorname{Li_2}(1+i)=frac{pi^2}{16}+left(frac{pi}{4}ln2+Gright)i$$ which give us: $$ln(-i)ln^2(1+i)=frac{pi^2}{8}ln2+left(frac{pi^3}{32}-frac{pi}{8}ln^22right)i$$ $$ln(1+i)operatorname{Li_2}(1+i) =-frac{pi}{4}G-frac{pi^2}{32}ln2+left(frac12ln2G+frac{pi^3}{64}+frac{pi}{8}ln^22right)i$$
Answered by Ali Shadhar on February 15, 2021
$$int_0^fracpi4Big(lnsin xBig)^2~dx~=~dfrac{23}{384}cdotpi^3~+~dfrac9{32}cdotpicdotln^22~+~underbrace{beta(2)}_text{Catalan}cdotdfrac{ln2}2~-~Imbigg[text{Li}_3bigg(dfrac{1+i}2bigg)bigg].$$
$$int_0^fracpi4Big(lncos xBig)^2~dx~=~dfrac{-7}{384}cdotpi^3~+~dfrac7{32}cdotpicdotln^22~-~underbrace{beta(2)}_text{Catalan}cdotdfrac{ln2}2~+~Imbigg[text{Li}_3bigg(dfrac{1+i}2bigg)bigg].$$
$$S=int_0^fracpi4Big(lnsin xBig)^2~dx~+~int_0^fracpi4Big(lncos xBig)^2~dx=I+J.$$
But, by a simple change of variable, $t=dfracpi2-x,~J$ can be shown to equal $displaystyleint_fracpi4^fracpi2Big(lnsin xBig)^2~dx$,
in which case $I+J=displaystyleint_0^fracpi2Big(lnsin xBig)^2~dx=dfrac{pi^3}{24}+dfracpi2ln^22.~$ So we know their sum! Now all
that's left to do is to find out their difference, $D=I-J.~$ Then we'll have $I=dfrac{S+D}2$ and
$J=dfrac{S-D}2$.
$$D=I-J=int_0^fracpi4Big(lnsin xBig)^2~dx-int_0^fracpi4Big(lncos xBig)^2~dx=int_0^fracpi4Big(ln^2sin x-ln^2cos xBig)~dx$$
$$=int_0^fracpi4Big(lnsin x-lncos xBig)~Big(lnsin x+lncos xBig)~dx=int_0^fracpi4lnfrac{sin x}{cos x}~lnbig(sin x~cos xbig)~dx=$$
$$=int_0^fracpi4lntan xcdotlnfrac{sin2x}2~dx=frac12int_0^fracpi2lntanfrac x2cdotlnfrac{sin x}2~dx=int_0^1ln tcdotlnfrac t{1+t^2}cdotfrac{dt}{1+t^2}$$
where the last expression was obtained by using the famous Weierstrass substitution, $t=tandfrac x2$
$$=int_0^1frac{ln tcdotBig[ln t-ln(1+t^2)Big]}{1+t^2}dt~=~int_0^1frac{ln^2t}{1+t^2}dt~-~int_0^1frac{ln t~lnbig(1+t^2big)}{1+t^2}dt~=~frac{pi^3}{16}-K,$$
where $~K=2~Imbigg[text{Li}_3bigg(dfrac{1+i}2bigg)bigg]-dfrac{pi^3}{64}-dfracpi{16}ln^22-underbrace{beta(2)}_text{Catalan}ln2.~$ It follows then that our two
definite integrals possess a closed form expression if and only if $~text{Li}_3bigg(dfrac{1+i}2bigg)$ has one as well. As
an aside, $~Rebigg[text{Li}_3bigg(dfrac{1+i}2bigg)bigg]=dfrac{ln^32}{48}-dfrac5{192}~pi^2~ln2+dfrac{35}{64}~zeta(3).~$ Also, $~K=displaystylesum_{n=1}^inftyfrac{(-1)^n~H_n}{(2n+1)^2}$.
Answered by Lucian on February 15, 2021
By setting $x=arctan t$ we have: $$int_{0}^{pi/4}log^2(cos x),dx = frac{1}{4}int_{0}^{1}frac{log^2(1+t^2)}{1+t^2}.$$ Attack plan: get the Taylor series of $log^2(1+t^2)$ and integrate it termwise.
Since $$-log(1-z)=sum_{n=1}^{+infty}frac{z^n}{n}$$ it follows that $$[z^n]log^2(1-z)=sum_{k=1}^{n-1}frac{1}{k(n-k)}=2frac{H_{n-1}}{n},$$ $$log^2(1+t^2)=sum_{n=2}^{+infty}2frac{H_{n-1}}{n}(-1)^n t^{2n}.tag{1}$$ If now we set $$mathcal{J}_m = int_{0}^{1}frac{t^{2m}}{t^2+1},dt $$ we have $mathcal{J}_0=frac{pi}{4}$ and $mathcal{J}_{m+1}+mathcal{J}_m = frac{1}{2m+1}$, hence: $$mathcal{J}_m = (mathcal{J}_m+mathcal{J}_{m-1})-(mathcal{J}_{m-1}+mathcal{J}_{m-2})+ldotspm(mathcal{J}_1+mathcal{J}_0)mpmathcal{J}_0,$$ $$mathcal{J}_m = sum_{j=0}^{m-1}frac{(-1)^j}{(2m-2j-1)}+(-1)^mfrac{pi}{4}=(-1)^m sum_{jgeq m}frac{(-1)^j}{2j+1}.tag{2}$$ From $(1)$ and $(2)$ it follows that: $$int_{0}^{pi/4}log^2(cos x),dx=frac{1}{2}sum_{n=2}^{+infty}frac{H_{n-1}}{n}sum_{rgeq n}frac{(-1)^r}{2r+1},tag{3}$$ and summation by parts gives:
$$int_{0}^{pi/4}log^2(cos x),dx=frac{1}{4}sum_{n=2}^{+infty}(H_n^2-H_n^{(2)})frac{(-1)^n}{2n+1}.tag{4}$$
UPDATE: the question is now set in an answer to another question. This site (many thanks to @gammatester) is devoted to the evaluation of sums like the one appearing in the RHS of $(4)$. Through Euler-Landen's identity (see the line below $(608)$ in the linked site) it is not too much difficult to see that the RHS of $(4)$ depends on $operatorname{Li}_3left(frac{1+i}{2}right)$ as stated in the @Lucian's answer.
Answered by Jack D'Aurizio on February 15, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP