Mathematics Asked on December 20, 2021
Let the function $Phi(x) := (1/sqrt{2pi})int_{-infty}^x e^{-t^2/2}dt$ be the standard Gaussian CDF. For $u > 0$, define $I(u) := int_0^1 Phi(u/r-ur)dr$.
Question. What are good upper-bounds for $I(u)$ in terms of $u$ ?
A good simple upper bound for $u > 1$:
Using integration by parts and then the substitution $w = frac{u}{r} - ur$, we have begin{align} I(u) &= frac{1}{2} + frac{1}{2usqrt{2pi}} int_0^infty mathrm{e}^{-frac{1}{2}w^2} (sqrt{w^2+4u^2} - w)mathrm{d} w\ &le frac{1}{2} + frac{1}{2usqrt{2pi}} int_0^infty mathrm{e}^{-frac{1}{2}w^2} left(2u + frac{w^2}{4u} - wright)mathrm{d} w\ &= 1 - frac{1}{2usqrt{2pi}} + frac{1}{16u^2}. end{align} The upper bound $I_1(u) = 1 - frac{1}{2usqrt{2pi}} + frac{1}{16u^2}$ is good if $u > 1$. For example, $frac{I_1(1)-I(1)}{I(1)} approx 0.009176113058$, $frac{I_1(2)-I(2)}{I(2)} approx 0.0007002868670$, and $frac{I_1(10)-I(10)}{I(10)} approx 0.000001187547307$.
Answered by River Li on December 20, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP