Mathematics Asked by Ajit Kumar on December 6, 2021
Find the Laplace transforms of the following:
1.$left(dfrac{cos sqrt t}{sqrt t}right)$,
2.$left(sin sqrt tright)$.
Well, in the first, I used the cosine series expansion and solved the problem.
But in the next one, I used the same logic, but didn’t get the answer as expected.
Please explain. Can question 2 be obtained from question 1?
Batominovski’s edit:
Here is how to solve question 1. Using $cos(theta)=sum_{k=0}^inftyfrac{(-1)^k}{(2k)!}theta^{2k}$, we have
$$cos(sqrt{t})=sum_{k=0}^inftyfrac{(-1)^k}{(2k)!} t^k,$$
so
$$frac{cos(sqrt{t})}{sqrt{t}}=sum_{k=0}^inftyfrac{(-1)^k}{(2k)!}t^{k-frac12}.$$
Therefore
$$f(s)=int_0^infty frac{cos(sqrt{t})}{sqrt{t}}e^{-st}dt=sum_{k=0}^inftyint_0^inftyfrac{(-1)^k}{(2k)!}t^{k-frac12}e^{-st} dt.$$
Thus, for $s>0$, by setting $u=st$, we have
$$f(s)=int_0^inftyfrac{(-1)^k}{(2k)!}frac{1}{s^{k+frac12}}int_0^infty u^{left(k+frac12right)-1}e^{-u}du.$$
Therefore,
$$f(s)=frac1{sqrt{s}}sum_{k=0}^inftyfrac{(-1)^k}{(2k)!}left(frac{1}{s}right)^kGammaleft(k+frac12right).$$
But $Gammaleft(k+frac12right)=frac{(2k-1)!!}{2^k}sqrt{pi}$, so
$$f(s)=sqrt{frac{pi}{s}}sum_{k=0}^infty(-1)^kfrac{(2k-1)!!}{(2k!)}left(frac{1}{2s}right)^k,$$
so
$$f(s)=sqrt{frac{pi}{s}}sum_{k=0}^inftyfrac{(-1)^k}{k!}left(frac{1}{4s}right)^k=sqrt{frac{pi}{s}}e^{-frac1{4s}}.$$
Note that you have : $$( sin ( sqrt t))'=frac 1 2frac {cos ( sqrt t)}{ sqrt t}$$ And $$mathscr {L} {f'(t)}(s)=s,mathscr {L} {f(t)}(s)-f(0)$$ Therefore: $$mathscr {L} {(sin ( sqrt t))'}(s)=s,mathscr {L} {sin ( sqrt t)}(s)$$ $$mathscr {L} left {frac 1 2frac {cos ( sqrt t)}{ sqrt t} right }(s)=s,mathscr {L} {sin ( sqrt t)}(s)$$ $$boxed {mathscr {L} left {frac {cos ( sqrt t)}{ sqrt t} right }(s)=2s,mathscr {L} {sin ( sqrt t)}(s)}$$
Answered by user577215664 on December 6, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP