Mathematics Asked by Flinn Bella on November 24, 2021
$$intfrac{1}{sqrt {2x} – sqrt {x+4}} , mathrm{dx}$$
I have tried $u$-substitution and multiplying by the conjugate and then apply $u$-substitution. For the $u$-substitution, I have set $u$ equal to each square root term, set $u$ equal to the entire denominator, and set $u$ equal to each expression in the radical.
However, all my attempts have just made the integral more complex without an obvious way to simplify. Can someone provide insight please? Thank you.
$$I=intfrac{1}{sqrt {2x} - sqrt {x+4}} , dx$$
Get rid of the denominator $$u=sqrt {2x} - sqrt {x+4}implies x=3 u^2+2 sqrt{2}u sqrt{u^2+4 }+4implies frac{dx}{du}=frac{sqrt{2} left(4 u^2+8 right)}{sqrt{u^2+4 }}+6 u$$ $$I=int6 du+intfrac{4 sqrt{2} u}{sqrt{u^2+4}}du+intfrac{8 sqrt{2}}{usqrt{u^2+4} }du$$ $$I=6u+4 sqrt{2} sqrt{u^2+4}-4 sqrt{2} log left(frac{sqrt{u^2+4}+2}{u}right)$$
Answered by Claude Leibovici on November 24, 2021
$$int frac{1}{sqrt{2x}-sqrt{x+4}} dx=int frac{(sqrt{2x}+sqrt{x+4})}{(sqrt{2x}-sqrt{x+4})(sqrt{2x}+sqrt{x+4})} dx=$$ $$=int frac{sqrt{2x}+sqrt{x+4}}{x-4} dx$$ $$=int frac{sqrt{2x} dx}{x-4} + int frac{sqrt{x+4} dx}{x-4}$$ $$=int frac{sqrt{2} xd(sqrt{x})}{x-4} + int frac{2(x+4)d(sqrt{x+4})}{x-4}$$ $$=int frac{(2sqrt{2}(x-4)+8sqrt2)d(sqrt{x})}{x-4} + int frac{(2(x-4)+16)d(sqrt{x+4})}{x-4}$$ $$=2sqrt{2} int d(sqrt{x})+8sqrt2int frac{d(sqrt{x})}{(sqrt{x})^2-2^2} + 2int d(sqrt{x+4})+16int frac{d(sqrt{x+4})}{(sqrt{x+4})^2-(2sqrt2)^2}$$ $$=2sqrt2sqrt{x}+8sqrt{2}frac{1}{2cdot 2}lnleft|frac{sqrt x-2}{sqrt{x}+2}right|+2sqrt{x+4}+16frac{1}{2cdot 2sqrt2}lnleft|frac{sqrt{x+4}-2sqrt2}{sqrt{x+4}+2sqrt2}right|$$ $$=2sqrt{2x}+2sqrt{2}lnleft|frac{sqrt x-2}{sqrt{x}+2}right|+2sqrt{x+4}+2sqrt2lnleft|frac{sqrt{x+4}-2sqrt2}{sqrt{x+4}+2sqrt2}right|+C$$
Answered by Harish Chandra Rajpoot on November 24, 2021
Multiplying by the conjugate and applying a couple of substitutions does work. begin{align*} intfrac{1}{sqrt {2x} - sqrt {x+4}} , mathrm{d}x &=int underbrace{frac{sqrt{2x}}{x-4}}_{sqrt{x} to u} + underbrace{frac{sqrt{x+4}}{x-4}}_{sqrt{x+4} to t} ; mathrm{d}x\ &=2sqrt{2} int frac{u^2}{u^2-4} ; mathrm{d}u+ 2int frac{t^2}{t^2-8} ; mathrm{d}t \ &=2sqrt{2} int frac{u^2-4+4}{u^2-4} ; mathrm{d}u+ 2int frac{t^2-8+8}{t^2-8} ; mathrm{d}t \ &=2sqrt{2}u +2sqrt{2} ln{bigg |frac{u-2}{u+2}bigg |} + 2t +2sqrt{2}ln{bigg |frac{t-2sqrt{2}}{t+2sqrt{2}}bigg |}+mathrm{C} \ &=2sqrt{2x} +2sqrt{2} ln{bigg |frac{sqrt{x}-2}{sqrt{x}+2}bigg |} + 2sqrt{x+4} +2sqrt{2}ln{bigg |frac{sqrt{x+4}-2sqrt{2}}{sqrt{x+4}+2sqrt{2}}bigg |}+mathrm{C} \ end{align*}
Answered by Ty. on November 24, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP