Mathematics Asked by zeroflank on January 28, 2021
I need to find the extremals for the following function :
$I(y) = displaystyle int_{x_0}^{x_1} dfrac{1 + y^2}{(y’)^3} dx$
So, by Euler Lagrange Equations
$I_{y}$ –$d/dx(I_{y’}) = 0$
Now, using this I get :
$dfrac{2y}{y’} + dfrac{2y}{3} = dfrac{4(1+y^2)y”}{(y’)^3}$
At, this point I am stuck, Please tell me how should I proceed ?
Thank You.
$I(y) = displaystyle int_{x_0}^{x_1} dfrac{1 + y^2}{(y')^3} dx$ reduced Euler-Lagrange equationd for $I=int F(x,y,y') dx $ is given as $$F-y'frac{partial F}{partial y'}=C.$$ So here we have $$frac{1+y^2}{y'^3}+3y'frac{1+y^2}{y'^4}=C implies y'= D(1+y^2)^{1/3}.$$ $$implies int frac{dy}{(1+y^2)^{1/3}}=Dx+E.$$ $$implies y~_2F_1(1/2,1/3,3/2;y^2)=Dx+E.$$ Here $~_2F_1(a,b;c,z)$ is the Gauss hypergeometric function.
Correct answer by Z Ahmed on January 28, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP