Mathematics Asked on December 25, 2021
Calculate the area between the two functions, $f(x)$, $g(x)$, for $x in [3,5]$.
$$f(x)=x^2+3x+7$$
$$g(x)=xe^{x^3+4}$$
To determine the area between the functions I used the formula $A= int_a^b|f(x)-g(x)|dx$. Therefore, I have:
begin{align}
A&=int_3^5|x^2+3x+7-xe^{x^3+4}|dx \
&= int_3^5|x^2|dx+int_3^5|3x|dx+int_3^5|7|dx-int_3^5|e^{x^3+4}|dx\
&= left(frac{x^3}{3}+frac{3x^2}{2}+7xright)_3^5 – int_3^5|xe^{x^3+4}|dx
end{align}
Here I can use $u$-subsitution and the Incomplete Gamma Function to find the integral of $xe^{x^3+4}$. All in all I get:
begin{align}
A&=left(frac{x^3}{3}+frac{3x^2}{2}+7x-e^4frac{1}{2}left(-frac{x^2Γleft(frac{1}{frac{3}{2}},:-left(x^2right)^{frac{3}{2}}right)}{frac{3}{2}sqrt[frac{3}{2}]{-left(x^2right)^{frac{3}{2}}}}right)right)_3^5\
&=-frac{98}{3}-24-14+e^4frac{1}{2}left(-frac{25Γleft(frac{1}{frac{3}{2}},:-25^{frac{3}{2}}right)}{frac{3}{2}sqrt[frac{3}{2}]{-25^{frac{3}{2}}}}-left(-frac{9Γleft(frac{1}{frac{3}{2}},:-9^{frac{3}{2}}right)}{frac{3}{2}sqrt[frac{3}{2}]{-9^{frac{3}{2}}}}right)right)
end{align}
Can this be simplified further or is the given solution enough?
$$int{x,e^{x^3+4}},dx=-frac{e^4 x^2 Gamma left(frac{2}{3},-x^3right)}{3 left(-x^3right)^{2/3}}=-frac{1}{3} e^4 x^2 E_{frac{1}{3}}left(-x^3right)$$ $$int_3 ^5 {x,e^{x^3+4}},dx=frac{e^4}{3} left(9 E_{frac{1}{3}}(-27)-25 E_{frac{1}{3}}(-125)right)$$ Since the arguments ar quite large, for an evaluation, you could use the expansion
$$E_{frac{1}{3}}left(-x^3right)=-e^{x^3} left(frac{1}{x^3}+frac{1}{3 x^6}+frac{4}{9 x^9}+Oleft(frac{1}{x^{12}}right)right)$$
Answered by Claude Leibovici on December 25, 2021
You can do this: $$The area between the two functions = int_{3}^{5}{xe^{x^3+4}}dx - int_3^5{x^2+3x+7}dx$$ Because $forall x in [3, 5] xe^{x^3+4} > x^2+3x+7$.
You can look here: https://www.desmos.com/calculator/csh4alwmeu
Answered by The student on December 25, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP