Mathematics Asked on December 15, 2021
If a complex number z satisfies $log _{frac{1}{2}}left(frac{|z|^{2}+2|z|+6}{2|z|^{2}-2|z|+1}right)<0$, then locus of point represented by z is
Since $log _{frac{1}{2}}left(frac{|z|^{2}+2|z|+6}{2|z|^{2}-2|z|+1}right)<0$
$therefore frac{|z|^{2}+2|z|+6}{2|z|^{2}-2|z|+1}<1$
$Rightarrow|z|^{2}-4|z|-5>0$
$Rightarrow(|z|-5)(|z|+1)>0 Rightarrow|z|>5 text{ and } |z|<-1$
But the ans is given in the question is $|z|<5$
Am i wrong???
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP