Mathematics Asked on January 15, 2021
Given that $int frac{1}{(x-1)^{frac 34} (x+2)^{frac 54}}dx$
Let $(x-1)^{frac 14} = t$
So the integral becomes $$int frac{4}{(t^4+3)^{frac 54}} dx$$
How do I solve it further?
Continue with
$$I=int frac{4}{(t^4+3)^{frac 54}} dt$$
and substitute $$frac3{u^4}=1+frac3{t^4}>>> implies >>>t^4+3= frac9{3-u^4},>>>dt = frac{3^{frac54}}{(3-u^4)^{frac54}}du $$
Then
$$I= frac4{3^{frac54}}int du=frac {4t}{3(t^4+3)^{frac14}}+C $$
Answered by Quanto on January 15, 2021
Note thatbegin{align}frac1{(x-1)^{3/4}(x+2)^{5/4}}&=frac{(x-1)^{-3/4}(x+2)^{-3/4}}{(x+2)^{2/4}}\&=frac{(x-1)^{-3/4}(x+2)^{-3/4}}{bigl((x+2)^{1/4}bigr)^2}.end{align}On the other hand,$$(x-1)^{-3/4}=4bigl((x-1)^{1/4}bigr)'quadtext{and}quad(x+2)^{-3/4}=4bigl((x+1)^{1/4}bigr)',$$from which it follows thatbegin{align}(x-1)^{-3/4}(x+2)^{-3/4}&=frac13(x-1)^{-3/4}(x+2)^{-3/4}bigl((x+2)-(x-1)bigr)\&=frac13bigl((x-1)^{-3/4}(x+2)^{1/4}-(x-1)^{1/4}(x+2)^{-3/4}bigr)\&=frac43left((x+2)^{1/4}bigl((x-1)^{1/4}bigr)'-(x-1)^{1/4}bigl((x+1)^{1/4}bigr)'right).end{align}Therefore,begin{align}frac1{(x-1)^{3/4}(x+2)^{5/4}}&=frac{frac43left((x+2)^{1/4}bigl((x-1)^{1/4}bigr)'-(x-1)^{1/4}bigl((x+1)^{1/4}bigr)'right)}{bigl((x+2)^{1/4}bigr)^2}\&=frac43left(frac{(x-1)^{1/4}}{(x+2)^{1/4}}right)'.end{align}So,$$intfrac1{(x-1)^{3/4}(x+2)^{5/4}},mathrm dx=frac43frac{(x-1)^{1/4}}{(x+2)^{1/4}}.$$
Answered by José Carlos Santos on January 15, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP