Mathematics Asked on December 8, 2021
Evaluate
$
cos a cos 2 a cos 3 a cdots cos 999 a
$
where $a=frac{2 pi}{1999}$
I know this question has already been answered many times but my doubt is different
Solution: Let $P$ denote the desired product, and let
$
Q=sin a sin 2 a sin 3 a cdots sin 999 a
$
Then
$
begin{aligned}
2^{999} P Q=&(2 sin a cos a)(2 sin 2 a cos 2 a) cdots(2 sin 999 a cos 999 a) \
=& sin 2 a sin 4 a cdots sin 1998 a \
=&(sin 2 a sin 4 a cdots sin 998 a)[-sin (2 pi-1000 a)] \
& cdot[-sin (2 pi-1002 a)] cdots[-sin (2 pi-1998 a)] \
=& (sin 2 a sin 4 a cdots sin 998 a) sin 999 a sin 997 a cdots sin a=Q
end{aligned}
$
how they got this last step from previous one ???
To reach penultimate step, use $sin(2pi-theta)=-sintheta$, and to go from penultimate to ultimate step, use $$2pi-1000a=2pi-1000cdotfrac{2pi}{1999}=2pileft(1-frac{1000}{1999}right)=2pifrac{999}{1999}=999a$$ Also, there comes out $(-1)^{999-500+1}$ if one counts only even numbers from $1000$ to $1998$.
Answered by Sameer Baheti on December 8, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP