TransWikia.com

Derive Greens function 1D heat equation with space dependent material parameters

Mathematics Asked on March 2, 2021

Can someone confirm the correctness of my derivation or see where the mistake is? I want to derive the Greens function for the 1D heat equation with (‘general’) SPACE DEPENDENT parameters in infinite space and zero initial condition:

$ frac{partial T}{partial t} = frac{1}{rho(x) c(x)}frac{partial }{partial x}( k(x) frac{partial T}{partial x}) + delta(x-x’) delta(t)$

In particular I’m looking for a solution where the infinite domain is divided into subdomains which contain constant material parameters. So the material parameters are actually block like functions. Let’s take a simple example: for $x < a: rho_1 c_1, k_1, alpha_1$ and for $x > a: rho_2 c_2, k_2, alpha_2$.

My derivation is as follows:

  1. Define a transformation: $ k(x) frac{partial T}{partial x} = frac{partial T}{partial y} $ or: $ frac{partial y}{partial x} = frac{1}{k(x)} $

This gives:

$ frac{partial T}{partial t} = frac{1}{rho(x) c(x)}frac{partial }{partial x }( k(x) frac{partial T}{partial x}) + delta(x-x’) delta(t)$

$ frac{partial T}{partial t} = frac{1}{rho(x) c(x)}frac{partial }{partial y}( frac{partial T}{partial y}) frac{partial y}{partial x} + delta(x-x’) delta(t)$

$ frac{partial T}{partial t} = frac{1}{rho(x) c(x) k(x)} frac{partial^2 T}{partial y^2} + delta(x-x’) delta(t)$

$ frac{partial T}{partial t} = frac{alpha(x)}{k^2(x)} frac{partial^2 T}{partial y^2} + delta(x-x’) delta(t)$

  1. Following transformation:

$ frac{partial T}{partial t} = frac{alpha(x)}{k^2(x)} frac{partial^2 T}{partial y^2} + delta(x-x’) delta(t)$

$ frac{partial T}{partial t} = frac{alpha(x)}{k^2(x)} frac{partial^2 T}{partial z^2} (frac{partial z}{partial y})^2 + delta(x-x’) delta(t) = frac{partial^2 T}{partial z^2} + delta(x-x’) delta(t)$

Where $(frac{partial z}{partial y})^2 = frac{k^2(x)}{alpha(x)} $ or : $ frac{partial z}{partial y} = frac{k(x)}{sqrt{alpha(x)}} $

  1. Do Laplace transform wrt time and a Fourier transform wrt z (This is one of the things I doubt about):

$s hat{T} = -omega^2 hat{T} + int_{-infty}^{infty} delta(x-x’) e^{-j omega z} dz$

We have:
$ frac{partial z}{partial y} = frac{k(x)}{sqrt{alpha(x)} } $

$ frac{partial z}{partial x} frac{partial x}{partial y} = frac{k(x)}{sqrt{alpha(x)} } $

$ frac{partial z}{partial x} k(x) = frac{k(x)}{sqrt{alpha(x)} } $

$ frac{partial z}{partial x} = frac{1}{sqrt{alpha(x)} } $

$ dz = frac{1}{sqrt{alpha(x)} }dx $

So this gives:
$hat{T} = frac{1}{s + omega^2}int_{-infty}^{infty} delta(x-x’) e^{-j omega z} frac{1}{sqrt{alpha (x)}}dx$

$hat{T} = frac{1}{s + omega^2} e^{-j omega z(x’)} frac{1}{sqrt{alpha (x’)}}$

  1. This looks like the Greens function transform wrt t and x with constant parameters:

$T = frac{exp{ -frac{(z(x) – z(x’))^2}{4t} }}{sqrt{4 pi t alpha(x’)}}$

Where: $ z(x) = int frac{1}{sqrt{alpha(x)} }dx $

Is this derivation and result correct?

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP