Mathematics Asked on March 2, 2021
Can someone confirm the correctness of my derivation or see where the mistake is? I want to derive the Greens function for the 1D heat equation with (‘general’) SPACE DEPENDENT parameters in infinite space and zero initial condition:
$ frac{partial T}{partial t} = frac{1}{rho(x) c(x)}frac{partial }{partial x}( k(x) frac{partial T}{partial x}) + delta(x-x’) delta(t)$
In particular I’m looking for a solution where the infinite domain is divided into subdomains which contain constant material parameters. So the material parameters are actually block like functions. Let’s take a simple example: for $x < a: rho_1 c_1, k_1, alpha_1$ and for $x > a: rho_2 c_2, k_2, alpha_2$.
My derivation is as follows:
This gives:
$ frac{partial T}{partial t} = frac{1}{rho(x) c(x)}frac{partial }{partial x }( k(x) frac{partial T}{partial x}) + delta(x-x’) delta(t)$
$ frac{partial T}{partial t} = frac{1}{rho(x) c(x)}frac{partial }{partial y}( frac{partial T}{partial y}) frac{partial y}{partial x} + delta(x-x’) delta(t)$
$ frac{partial T}{partial t} = frac{1}{rho(x) c(x) k(x)} frac{partial^2 T}{partial y^2} + delta(x-x’) delta(t)$
$ frac{partial T}{partial t} = frac{alpha(x)}{k^2(x)} frac{partial^2 T}{partial y^2} + delta(x-x’) delta(t)$
$ frac{partial T}{partial t} = frac{alpha(x)}{k^2(x)} frac{partial^2 T}{partial y^2} + delta(x-x’) delta(t)$
$ frac{partial T}{partial t} = frac{alpha(x)}{k^2(x)} frac{partial^2 T}{partial z^2} (frac{partial z}{partial y})^2 + delta(x-x’) delta(t) = frac{partial^2 T}{partial z^2} + delta(x-x’) delta(t)$
Where $(frac{partial z}{partial y})^2 = frac{k^2(x)}{alpha(x)} $ or : $ frac{partial z}{partial y} = frac{k(x)}{sqrt{alpha(x)}} $
$s hat{T} = -omega^2 hat{T} + int_{-infty}^{infty} delta(x-x’) e^{-j omega z} dz$
We have:
$ frac{partial z}{partial y} = frac{k(x)}{sqrt{alpha(x)} } $
$ frac{partial z}{partial x} frac{partial x}{partial y} = frac{k(x)}{sqrt{alpha(x)} } $
$ frac{partial z}{partial x} k(x) = frac{k(x)}{sqrt{alpha(x)} } $
$ frac{partial z}{partial x} = frac{1}{sqrt{alpha(x)} } $
$ dz = frac{1}{sqrt{alpha(x)} }dx $
So this gives:
$hat{T} = frac{1}{s + omega^2}int_{-infty}^{infty} delta(x-x’) e^{-j omega z} frac{1}{sqrt{alpha (x)}}dx$
$hat{T} = frac{1}{s + omega^2} e^{-j omega z(x’)} frac{1}{sqrt{alpha (x’)}}$
$T = frac{exp{ -frac{(z(x) – z(x’))^2}{4t} }}{sqrt{4 pi t alpha(x’)}}$
Where: $ z(x) = int frac{1}{sqrt{alpha(x)} }dx $
Is this derivation and result correct?
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP