Mathematics Asked on December 10, 2021
Given the following matrix
$$A = begin{bmatrix} 1 & -3 & 0 & 3 \ -2 & -6 & 0 & 13 \ 0 & -3 & 1 & 3 \ -1 & -4 & 0 & 8end{bmatrix}$$
I need to calculate $|lambda I – A|$.
I get to a very complicated determinant. Is there an easier way? The answer says it’s $(lambda – 1)^4$.
Hint:
First expand along the 3rd column: $$lambda I-A= begin{vmatrix} lambda-1 &3&0&-3 \ 2&lambda+6& 0&-13 \ 0&3&lambda-1&-3\ 1&4&0&lambda-8 end{vmatrix}=(lambda-1)begin{vmatrix} lambda-1 &3&-3 \ 2&lambda+6& -13 \ 1&4&lambda-8 end{vmatrix}$$ Now, either you apply directly Sarrus' rule, or you simplify the 3rd order determinant (we'll denote it $D$) with elementary operations to make a determinant with more zeros: $$D=begin{vmatrix} lambda-1 &3&0 \ 2&lambda+6&lambda-7 \ 1&4&lambda-4 end{vmatrix}=begin{vmatrix} lambda-1 &3&0 \ 0&lambda-2 &1-lambda\ 1&0&lambda-4 end{vmatrix}.$$
Answered by Bernard on December 10, 2021
$$lambda I- A= begin{bmatrix} lambda -1&3&0&-3 \ 2&lambda + 6&0&-13 \ 0&3&lambda -1&-3 \ 1&4&0&lambda-8 end{bmatrix} $$
By developing the determinant using the third column, we'll have:
$$det(lambda I -A)= (lambda -1) cdot begin{bmatrix} lambda -1&3&-3 \ 2&lambda + 6&-13 \ 1&4&lambda-8 end{bmatrix} $$ $$= (lambda -1)left( (lambda -1)cdot begin{bmatrix}lambda + 6&-13 \ 4& lambda-8 end{bmatrix} - 3 cdot begin{bmatrix}2&-13 \ 1& lambda-8 end{bmatrix} +3 cdot begin{bmatrix}2&lambda +6 \ 1& 4 end{bmatrix} right)$$
by solving this, you will get your answer. I don't think it's too complicated to handle. notice that $$begin{bmatrix}lambda + 6&-13 \ 4& lambda-8 end{bmatrix}, begin{bmatrix}2&-13 \ 1& lambda-8 end{bmatrix} , begin{bmatrix}2&lambda +6 \ 1& 4 end{bmatrix}$$ are three minors which you will have to find their determinant.
Answered by Jneven on December 10, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP