TransWikia.com

Simplifying elements of a matrix

Mathematica Asked by Shikhar Amar on February 12, 2021

These elements of the matrices can be simplified by hand much further{roots can be cancelled and all}, yet the Fullsimplify in Mathematica doesn’t simply it completely.

enter image description here

The matrix is:

{{-((p^2 + Sqrt[m^2 + p^2] p3 - p0 (Sqrt[m^2 + p^2] + p3))/
   m), -(((p^2 + (m + Sqrt[m^2 + p^2]) (m - p0)) (-I p2 + Sqrt[
      p^2 - p2^2 - p3^2]))/(m (m + Sqrt[m^2 + p^2]))), (1/(
  m (m + Sqrt[m^2 + p^2])))(-p^2 p2 + Sqrt[m^2 + p^2] p0 p2 + 
    m (-Sqrt[m^2 + p^2] + p0) p2 - I p0 p3 Sqrt[p^2 - p2^2 - p3^2] + 
    I p3 Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)] + 
    I m^2 (I p2 + Sqrt[p^2 - p2^2 - p3^2]) + 
    I m (p3 Sqrt[p^2 - p2^2 - p3^2] + 
       Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)])), (1/(
  m (m + Sqrt[m^2 + p^2])))(-I (Sqrt[m^2 + p^2] - p0) p2^2 + 
    I m^2 (p0 - p3) - 
    I p3 (p^2 + Sqrt[m^2 + p^2] p3 - p0 (Sqrt[m^2 + p^2] + p3)) + 
    p2 (-p0 Sqrt[p^2 - p2^2 - p3^2] + 
       Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)]) + 
    m (I (p0 - p3) (Sqrt[m^2 + p^2] + p3) + 
       p2 (-I p2 + Sqrt[p^2 - p2^2 - p3^2])))}, {-(((p^2 + (m + Sqrt[
         m^2 + p^2]) (m - p0)) (I p2 + Sqrt[p^2 - p2^2 - p3^2]))/(
   m (m + Sqrt[m^2 + p^2]))), (-p^2 + p0 (Sqrt[m^2 + p^2] - p3) + 
   Sqrt[m^2 + p^2] p3)/m, (1/(
  m (m + Sqrt[m^2 + p^2])))(-I (Sqrt[m^2 + p^2] - p0) p2^2 + 
    I m^2 (p0 + p3) + I m (Sqrt[m^2 + p^2] - p3) (p0 + p3) + 
    I p3 (p^2 - Sqrt[m^2 + p^2] p0 - Sqrt[m^2 + p^2] p3 + p0 p3) + 
    p0 p2 Sqrt[p^2 - p2^2 - p3^2] - 
    p2 Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)] - 
    m p2 (I p2 + Sqrt[p^2 - p2^2 - p3^2])), (1/(
  m (m + Sqrt[m^2 + p^2])))(p^2 p2 + m (Sqrt[m^2 + p^2] - p0) p2 - 
    Sqrt[m^2 + p^2] p0 p2 + I p0 p3 Sqrt[p^2 - p2^2 - p3^2] - 
    I p3 Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)] + 
    m^2 (p2 + I Sqrt[p^2 - p2^2 - p3^2]) + 
    I m (-p3 Sqrt[p^2 - p2^2 - p3^2] + 
       Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)]))}, {(1/(
  m (m + Sqrt[m^2 + p^2])))(-p^2 p2 + Sqrt[m^2 + p^2] p0 p2 + 
    m (-Sqrt[m^2 + p^2] + p0) p2 + I p0 p3 Sqrt[p^2 - p2^2 - p3^2] - 
    I p3 Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)] + 
    I m^2 (I p2 + Sqrt[p^2 - p2^2 - p3^2]) + 
    I m (-p3 Sqrt[p^2 - p2^2 - p3^2] + 
       Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)])), (1/(
  m (m + Sqrt[m^2 + p^2])))(I (Sqrt[m^2 + p^2] - p0) p2^2 - 
    I m^2 (p0 + p3) + 
    I p3 (-p^2 + Sqrt[m^2 + p^2] p0 + Sqrt[m^2 + p^2] p3 - p0 p3) + 
    p0 p2 Sqrt[p^2 - p2^2 - p3^2] - 
    p2 Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)] - 
    I m ((Sqrt[m^2 + p^2] - p3) (p0 + p3) + 
       p2 (-p2 - I Sqrt[p^2 - p2^2 - p3^2]))), (-p^2 + 
   p0 (Sqrt[m^2 + p^2] - p3) + Sqrt[m^2 + p^2] p3)/
  m, ((p^2 + (m + Sqrt[m^2 + p^2]) (m - p0)) (-I p2 + Sqrt[
     p^2 - p2^2 - p3^2]))/(m (m + Sqrt[m^2 + p^2]))}, {(1/(
  m (m + Sqrt[m^2 + p^2])))(I (Sqrt[m^2 + p^2] - p0) p2^2 - 
    I m^2 (p0 - p3) + 
    I p3 (p^2 + Sqrt[m^2 + p^2] p3 - p0 (Sqrt[m^2 + p^2] + p3)) + 
    p2 (-p0 Sqrt[p^2 - p2^2 - p3^2] + 
       Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)]) + 
    m (-I (p0 - p3) (Sqrt[m^2 + p^2] + p3) + 
       p2 (I p2 + Sqrt[p^2 - p2^2 - p3^2]))), (1/(
  m (m + Sqrt[m^2 + p^2])))(p^2 p2 + m (Sqrt[m^2 + p^2] - p0) p2 - 
    Sqrt[m^2 + p^2] p0 p2 - I p0 p3 Sqrt[p^2 - p2^2 - p3^2] + 
    I p3 Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)] + 
    m^2 (p2 + I Sqrt[p^2 - p2^2 - p3^2]) + 
    I m (p3 Sqrt[p^2 - p2^2 - p3^2] + 
       Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)])), ((p^2 + (m + Sqrt[
        m^2 + p^2]) (m - p0)) (I p2 + Sqrt[p^2 - p2^2 - p3^2]))/(
  m (m + Sqrt[m^2 + p^2])), -((
   p^2 + Sqrt[m^2 + p^2] p3 - p0 (Sqrt[m^2 + p^2] + p3))/m)}}

some of the substitution we can make are (already taken),

{p1 -> Sqrt[p^2 - p2^2 - p3^2], e -> Sqrt[p^2 + m^2]}
Assuming[{Element[{p0, p, p2, p3}, Reals], m > 0}, sat2 = sat // FullSimplify]

What more could be done to simplify the elements of the matrix?

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP