Mathematica Asked by Shikhar Amar on February 12, 2021
These elements of the matrices can be simplified by hand much further{roots can be cancelled and all}, yet the Fullsimplify in Mathematica doesn’t simply it completely.
The matrix is:
{{-((p^2 + Sqrt[m^2 + p^2] p3 - p0 (Sqrt[m^2 + p^2] + p3))/
m), -(((p^2 + (m + Sqrt[m^2 + p^2]) (m - p0)) (-I p2 + Sqrt[
p^2 - p2^2 - p3^2]))/(m (m + Sqrt[m^2 + p^2]))), (1/(
m (m + Sqrt[m^2 + p^2])))(-p^2 p2 + Sqrt[m^2 + p^2] p0 p2 +
m (-Sqrt[m^2 + p^2] + p0) p2 - I p0 p3 Sqrt[p^2 - p2^2 - p3^2] +
I p3 Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)] +
I m^2 (I p2 + Sqrt[p^2 - p2^2 - p3^2]) +
I m (p3 Sqrt[p^2 - p2^2 - p3^2] +
Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)])), (1/(
m (m + Sqrt[m^2 + p^2])))(-I (Sqrt[m^2 + p^2] - p0) p2^2 +
I m^2 (p0 - p3) -
I p3 (p^2 + Sqrt[m^2 + p^2] p3 - p0 (Sqrt[m^2 + p^2] + p3)) +
p2 (-p0 Sqrt[p^2 - p2^2 - p3^2] +
Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)]) +
m (I (p0 - p3) (Sqrt[m^2 + p^2] + p3) +
p2 (-I p2 + Sqrt[p^2 - p2^2 - p3^2])))}, {-(((p^2 + (m + Sqrt[
m^2 + p^2]) (m - p0)) (I p2 + Sqrt[p^2 - p2^2 - p3^2]))/(
m (m + Sqrt[m^2 + p^2]))), (-p^2 + p0 (Sqrt[m^2 + p^2] - p3) +
Sqrt[m^2 + p^2] p3)/m, (1/(
m (m + Sqrt[m^2 + p^2])))(-I (Sqrt[m^2 + p^2] - p0) p2^2 +
I m^2 (p0 + p3) + I m (Sqrt[m^2 + p^2] - p3) (p0 + p3) +
I p3 (p^2 - Sqrt[m^2 + p^2] p0 - Sqrt[m^2 + p^2] p3 + p0 p3) +
p0 p2 Sqrt[p^2 - p2^2 - p3^2] -
p2 Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)] -
m p2 (I p2 + Sqrt[p^2 - p2^2 - p3^2])), (1/(
m (m + Sqrt[m^2 + p^2])))(p^2 p2 + m (Sqrt[m^2 + p^2] - p0) p2 -
Sqrt[m^2 + p^2] p0 p2 + I p0 p3 Sqrt[p^2 - p2^2 - p3^2] -
I p3 Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)] +
m^2 (p2 + I Sqrt[p^2 - p2^2 - p3^2]) +
I m (-p3 Sqrt[p^2 - p2^2 - p3^2] +
Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)]))}, {(1/(
m (m + Sqrt[m^2 + p^2])))(-p^2 p2 + Sqrt[m^2 + p^2] p0 p2 +
m (-Sqrt[m^2 + p^2] + p0) p2 + I p0 p3 Sqrt[p^2 - p2^2 - p3^2] -
I p3 Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)] +
I m^2 (I p2 + Sqrt[p^2 - p2^2 - p3^2]) +
I m (-p3 Sqrt[p^2 - p2^2 - p3^2] +
Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)])), (1/(
m (m + Sqrt[m^2 + p^2])))(I (Sqrt[m^2 + p^2] - p0) p2^2 -
I m^2 (p0 + p3) +
I p3 (-p^2 + Sqrt[m^2 + p^2] p0 + Sqrt[m^2 + p^2] p3 - p0 p3) +
p0 p2 Sqrt[p^2 - p2^2 - p3^2] -
p2 Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)] -
I m ((Sqrt[m^2 + p^2] - p3) (p0 + p3) +
p2 (-p2 - I Sqrt[p^2 - p2^2 - p3^2]))), (-p^2 +
p0 (Sqrt[m^2 + p^2] - p3) + Sqrt[m^2 + p^2] p3)/
m, ((p^2 + (m + Sqrt[m^2 + p^2]) (m - p0)) (-I p2 + Sqrt[
p^2 - p2^2 - p3^2]))/(m (m + Sqrt[m^2 + p^2]))}, {(1/(
m (m + Sqrt[m^2 + p^2])))(I (Sqrt[m^2 + p^2] - p0) p2^2 -
I m^2 (p0 - p3) +
I p3 (p^2 + Sqrt[m^2 + p^2] p3 - p0 (Sqrt[m^2 + p^2] + p3)) +
p2 (-p0 Sqrt[p^2 - p2^2 - p3^2] +
Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)]) +
m (-I (p0 - p3) (Sqrt[m^2 + p^2] + p3) +
p2 (I p2 + Sqrt[p^2 - p2^2 - p3^2]))), (1/(
m (m + Sqrt[m^2 + p^2])))(p^2 p2 + m (Sqrt[m^2 + p^2] - p0) p2 -
Sqrt[m^2 + p^2] p0 p2 - I p0 p3 Sqrt[p^2 - p2^2 - p3^2] +
I p3 Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)] +
m^2 (p2 + I Sqrt[p^2 - p2^2 - p3^2]) +
I m (p3 Sqrt[p^2 - p2^2 - p3^2] +
Sqrt[-(m^2 + p^2) (-p^2 + p2^2 + p3^2)])), ((p^2 + (m + Sqrt[
m^2 + p^2]) (m - p0)) (I p2 + Sqrt[p^2 - p2^2 - p3^2]))/(
m (m + Sqrt[m^2 + p^2])), -((
p^2 + Sqrt[m^2 + p^2] p3 - p0 (Sqrt[m^2 + p^2] + p3))/m)}}
some of the substitution we can make are (already taken),
{p1 -> Sqrt[p^2 - p2^2 - p3^2], e -> Sqrt[p^2 + m^2]}
Assuming[{Element[{p0, p, p2, p3}, Reals], m > 0}, sat2 = sat // FullSimplify]
What more could be done to simplify the elements of the matrix?
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP