Mathematica Asked by Hazoor Imran on December 7, 2020
I am trying to Plot Eigenvalues of a Hamiltonian, but I am getting noisy plot, which is incorrect. Here is the code.
A1 = {{0, 1, 0, 0}, {1, 0, 0, 0}, {0, 0, 0, -1}, {0, 0, -1, 0}};
A2 = {{0, -I, 0, 0}, {I, 0, 0, 0}, {0, 0, 0, -I}, {0, 0, I, 0}};
A3 = {{0, 0, 0, -1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {-1, 0, 0, 0}};
A4 = {{0, -I, 0, 0}, {I, 0, 0, 0}, {0, 0, 0, I}, {0, 0, -I, 0}};
A5 = {{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, -1}};
A6 = {{0, 0, 0, -I}, {0, 0, I, 0}, {0, -I, 0, 0}, {I, 0, 0, 0}};
A7 = {{0, 0, 1, 0}, {0, 0, 0, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}};
A8 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}};
H[d_, λ_, β_, m_] :=
a (Sin[x] A1 + Sin[ky] A2) + A3 β +
d A4 + (t Cos[z] + 2 b (2 - Cos[x] - Cos[ky])) A5 + α*
Sin[ky] A6 + λ Sin[z] A7+m*A8;
ky = 0;
a = 1;
b = 1;
t = 1.5;
α = 0.3;
Plot3D[Eigenvalues[H[0.1, 0.5, 0.7, 0]][[4]], {x, -π, π}, {z, 0, 2 π}]
Any help will be highly appreciated.
Not sure why you pick the 4th element, but maybe this will help:
ev4 = Eigenvalues[H[p, q, r, s]][[4]] /.
Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}];
Plot3D[ev4, {x, -π, π}, {z, 0, 2 π}]
Answered by Michael E2 on December 7, 2020
By default, the eigenvalues are ordered by absolute value. All the eigenvalues of this particular matrix have the same absolute value plus some rounding errors. Thus, it can easily happen, that the fourth eigenvalue is positive or negative, depending on the parameters.
You can use Max
to plot the largest eigenvalue:
Plot3D[Max@Eigenvalues[H[0.1, 0.5, 0.7, 0.]], {x, -Pi, Pi}, {z, 0, 2 Pi}]
Alternatively, you may use the "Criteria"
suboption of the Method "Arnoldi"
:
Plot3D[
Eigenvalues[
H[0.1, 0.5, 0.7, 0], -1,
Method -> {"Arnoldi", "Criteria" -> "RealPart"}
],
{x, - Pi, Pi}, {z, 0, 2 Pi}]
Answered by Henrik Schumacher on December 7, 2020
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP