Mathematica Asked by Chromo Runge on July 16, 2021
Consider a real tensor $bf{T}$ upon $mathopotimeslimits_{n}(mathbb{R}^3)$, with a definite order $n$, it could be isotropic, i.e., be invariant under the action of all elements in $SO(3)$(not $O(3)$, so pseudo-tensor is allowed), only if which matches a certain pattern.
e.g., with $n=1$, thus $bf{T}$ is a vector in $mathbb{R}^3$. The only possible isotropic vector must be zero vector, $bf0$.
$n=2$, is $lambda bf{I}$, where $bf{I}$ is identity tensor, or $lambdadelta_{ij}$, in component. $delta_{ij}$ is Kronecker delta.
$n=3$, is $lambda epsilon_{ijk}$.
$n=4$, is $alpha delta_{ij}delta_{kl}+betadelta_{ik}delta_{jl}+gammadelta_{il}delta_{jk}$.
I use this piece of code to get the pattern:
tensor[n_] := tensor[n] = Array[Symbol[
StringJoin["t", Sequence @@ ToString /@ {##}]
]&, ConstantArray[3, n]];
this makes an abstract tensor in order $n$.
For order $n$, the result $T’_{i_1′ i_2’dots i_n’}$ after above transformation is
$$T’_{i_1′ i_2’dots i_n’}=R_{i_1’i_1}R_{i_2’i_2}dots R_{i_n’i_n}T_{i_1i_2dots i_n}$$
where $R$ is the rotation matrix in $SO(3)$.
Then use:
matrixZ[q_] := RotationMatrix[q, {0, 0, 1}]
matrixY[q_] := RotationMatrix[q, {0, 1, 0}]
to generate rotation matrices in two orthogonal axes. Tensor is isotropic iff its invariant under those matrices(for arbitrary q)(cause any rotation can be
decompose into three rotations in these two axes, first around $z$, then $y$, and finally $z$ again).
res[n_, mat_, ts_] := TensorContract[
Outer[Times, ts, Sequence@@(ConstantArray[mat, n])],
{#, 2#+n}& /@ Range[n]
]
give the result $mathbf{T}’$, corresponding to rotation matrix mat
, tensor ts
and order n
.
Now I can solve it(e.g. order $3$):
tensor3 = tensor[3];
matZ = matrixZ[Pi/2];
matY = matrixY[Pi/2];
resZ = res[3, matZ, tensor3];
resY = res[3, matY, tensor3]
tensor3 /. First @ Solve[
tensor3 == resZ == resY,
Flatten @ tensor3
]
(*
{{{0, 0, 0}, {0, 0, t123}, {0, -t123, 0}},
{{0, 0, -t123}, {0, 0, 0}, {t123, 0, 0}},
{{0, t123, 0}, {-t123, 0, 0}, {0, 0, 0}}}
*)
Questions
This method is sometimes very slow, seems the performance depends on the value of q
of the matrix.
For example, in order $4$:
tensor4=tensor[4];
matZ1=matrixZ[Pi/4];
matY1=matrixY[Pi/4];
matZ2=matrixZ[Pi/2];
matY2=matrixY[Pi/2];
resZ1=res[4,matZ1,tensor4];
resY1=res[4,matY1,tensor4];
resZ2=res[4,matZ2,tensor4];
resY2=res[4,matY2,tensor4];
If I chose matZ1, matY1
, the symbolic way will take too long time to get solution(over five minute), but for matZ1, matY2
only 0.0711628s
:
AbsoluteTiming@Solve[{
tensor4 == resY2 == resZ1}, Flatten@tensor4, Method->Reduce]
{0.0779194, {{t1111 -> t1122 + t1212 + t1221, t1112 -> 0,
t1113 -> 0, t1121 -> 0, t1123 -> 0, t1131 -> 0, t1132 -> 0,
t1133 -> t1122, t1211 -> 0, t1213 -> 0, t1222 -> 0,
t1223 -> 0, t1231 -> 0, t1232 -> 0, t1233 -> 0, t1311 -> 0,
t1312 -> 0, t1313 -> t1212, t1321 -> 0, t1322 -> 0,
t1323 -> 0, t1331 -> t1221, t1332 -> 0, t1333 -> 0,
t2111 -> 0, t2112 -> t1221, t2113 -> 0, t2121 -> t1212,
t2122 -> 0, t2123 -> 0, t2131 -> 0, t2132 -> 0, t2133 -> 0,
t2211 -> t1122, t2212 -> 0, t2213 -> 0, t2221 -> 0,
t2222 -> t1122 + t1212 + t1221, t2223 -> 0, t2231 -> 0,
t2232 -> 0, t2233 -> t1122, t2311 -> 0, t2312 -> 0,
t2313 -> 0, t2321 -> 0, t2322 -> 0, t2323 -> t1212,
t2331 -> 0, t2332 -> t1221, t2333 -> 0, t3111 -> 0,
t3112 -> 0, t3113 -> t1221, t3121 -> 0, t3122 -> 0,
t3123 -> 0, t3131 -> t1212, t3132 -> 0, t3133 -> 0,
t3211 -> 0, t3212 -> 0, t3213 -> 0, t3221 -> 0, t3222 -> 0,
t3223 -> t1221, t3231 -> 0, t3232 -> t1212, t3233 -> 0,
t3311 -> t1122, t3312 -> 0, t3313 -> 0, t3321 -> 0,
t3322 -> t1122, t3323 -> 0, t3331 -> 0, t3332 -> 0,
t3333 -> t1122 + t1212 + t1221}}}
Can we find isotropic tensor patterns faster(like kill duplicate equations)? Is there any way to avoid choosing parameters(e.g., matX
, matY
etc.) manually?
What’s the universal formula of isotropic tensors?
I must admit, I haven't read much past the question description, but the following creates isotropic tensors in 3-dimensions for rank n
.
As you note, we're seeking for tensors which satisfy: $$ T'_{i_1' i_2'dots i_n'}=R_{i_1'i_1}R_{i_2'i_2}dots R_{i_n'i_n}T_{i_1i_2dots i_n} $$
The important identity here, is that we can express infinitesimal rotations (to first order) using the dimension-3 alternating tensor:
$$ R_{ij}=delta_{ij}-delta theta_k epsilon_{kij} $$
For the $n=2$ case, this means we're looking for conditions like: $$ epsilon_{mij}T_{sj} + epsilon_{mjs} T_{is} =0 $$ Similarly, for $n=3$ and $n=4$: $$ epsilon_{mij}T_{sjk} + epsilon_{mjs} T_{isk} + epsilon_{mks} T_{ijs} =0 epsilon_{mij}T_{sjkl} + epsilon_{mjs} T_{iskl} + epsilon_{mks} T_{ijsl} + + epsilon_{mls} T_{ijks} =0 $$
We can implement this in Mathematica as:
generalIsotropicTensor[rank_, syms_ : {}, symbol_ : A] :=
Block[
{a = symmetrizedTensor[rank, syms, symbol],
[Epsilon] = LeviCivitaTensor[3],
isotropyRequirements},
isotropyRequirements =
Normal[Plus @@ (MapIndexed[
TensorTranspose[
TensorContract[TensorProduct[[Epsilon], a], #1],
Permute[Range[rank + 1],
Cycles[{Range[2, First[#2] + 1]}]]] &,
Table[{3, 3 + i}, {i, rank}]])];
a /. Quiet[
First[Solve[Thread[Flatten[isotropyRequirements] == 0],
Variables[a]]]]
]
symmetrizedTensor[rank_, syms_ : {}, symbol_ : A] :=
Normal[SymmetrizedArray[
pos_ :> Subscript[symbol, StringJoin[ToString /@ pos]],
ConstantArray[3, rank], syms]]
Which gives for $n=1,2,3,4$:
MatrixForm@*generalIsotropicTensor /@ Range[4]
Note that $n=4$ might be hard to inspect visually, but corresponds to the notation used in OP by the following substitutions: $$ alpha rightarrow A_{3311},; beta rightarrow A_{1313},; gamma rightarrow A_{1111}-A_{1313}-A_{3311} $$
The code also accepts additional symmetries, e.g. in hydrodynamics Stokes Assumption (i<->j) implies $beta=gamma$, which can be used as follows:
generalIsotropicTensor[4, {{Cycles[{{1, 2}}], 1}}]
Also note that I haven't checked this thoroughly for $n>4$.
I've yet to check the actual independent components are correct for $n>4$, but the number of independent components seems to hold for $n=5,6,7,8$ in accordance with the paper given by @yarchik in the comments above, so seems plausible.
Correct answer by George Varnavides on July 16, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP