Mathematica Asked on September 21, 2020
The following result of indefinite integral contains hypergeometric series, but the reference answer is $-frac{1}{2}left(e^{-2 x} arctan e^{x}+e^{-x}+arctan e^{x}right)$.
Integrate[ArcTan[E^x]/E^(2 x), x,
GeneratedParameters -> C] // FullSimplify
D[Integrate[ArcTan[E^x]/E^(2 x),
x] - (-(1/2) (E^(-2 x) ArcTan[E^x] + E^-x + ArcTan[E^x])),
x] // FullSimplify
How can I further simplify the above indefinite integral result into the form of reference answer?
Try
Integrate[ArcTan[E^x]/E^(2 x), x]//FunctionExpand //PowerExpand //Expand
Correct answer by Andreas on September 21, 2020
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP