Mathematica Asked on May 3, 2021
DynamicLocation
can be very useful:
LocatorPane[Dynamic@x,
Graphics[
{ EdgeForm @ Thick, FaceForm @ None, Rectangle[BoxID -> "box"]
, Arrow[{Dynamic[x], DynamicLocation["box", Automatic]}]
}
, PlotRange -> 2
]
]
but I don’t know much about it. It was introduced to me by Szabolcs somewhere around this topic: Find inset bounding box in plot coordinates. It is extensively used in Graph
related plots, e.g. to make edge arrows pointing neatly to the edge of a vertex shape.
As shown above it can be used to specify position in Graphics
with respect to primitives’ boxes. So we can point e.g. Arrow to a Recangle, without knowing it’s position, which was previously marked by BoxID
. (see more: BoxID in InputField focus)
It also accepts more arguments which can e.g. automatically point to the closest point on marked primitive. Something that would normally cost us calling the kernel for some region related procedures.
But what arguments does it accept and what do they do? What are possible pitfalls in using it?
From Graph related documentation pages I extracted only examples with:
DynamicLocation[id_String, Automatic | None, _alignmentSpec]}]
Where alignmentSpec
is {Left, Center}
etc.
I also noticed that its behavior depends of parent graphics primitive (not id’s owner):
LocatorPane[Dynamic@x,
Graphics[
{EdgeForm@Thick, FaceForm@None, Rectangle[BoxID -> "box"]
, Rectangle[Dynamic[x], DynamicLocation["box", Automatic]]
, Arrow[{Dynamic[x], DynamicLocation["box", Automatic]}]
}
, PlotRange -> 2]
]
So the same DynamicLocation is points to different positions for Rectangle and Arrow, keep that in mind in your answer.
So I did a scrape of all the installation files (nb, m, tr) and this is what I got:
$dynamicLocationDump=CloudImport["https://www.wolframcloud.com/objects/b3m2a1/dynamic_location_dump.mx"];
It's an Association
of files and what was found there. All of the files are to be ref pages, many for Combinatorica
.
If we look at all of the stuff that's scraped, this is what we find:
$specs = Cases[$dynamicLocationDump // Values, _DynamicLocation, [Infinity]] //
DeleteDuplicatesBy[Rest]
{DynamicLocation["VertexID$1", Automatic, Center],
DynamicLocation["VertexID$1", None, Center],
DynamicLocation["EdgeLabelID$2", Automatic, Scaled[0.5]],
DynamicLocation["VertexID$2", Automatic, Right],
DynamicLocation["VertexID$4", Automatic, Top],
DynamicLocation["VertexID$1", Automatic, {Right, Top}],
DynamicLocation["VertexID$1", Automatic, Left],
DynamicLocation["VertexID$5", Automatic, {Right, Bottom}],
DynamicLocation["VertexID$6", Automatic, Bottom],
DynamicLocation["EdgeLabelID$1", Automatic, Scaled[0.9]],
DynamicLocation["EdgeLabelID$4", Automatic, Scaled[0.965]],
DynamicLocation["EdgeLabelID$5", Automatic, Scaled[1]],
DynamicLocation["EdgeLabelID$1", Automatic, Scaled[0.]],
DynamicLocation["EdgeLabelID$1", Automatic, Scaled[1.]],
DynamicLocation["EdgeLabelID$2", Automatic, Scaled[0.96]],
DynamicLocation["EdgeLabelID$2", Automatic, Scaled[0.955]],
DynamicLocation["EdgeLabelID$1", Automatic, Scaled[0]],
DynamicLocation["EdgeLabelID$1", Automatic, Scaled[1/4]],
DynamicLocation["EdgeLabelID$1", Automatic, Scaled[1/3]],
DynamicLocation["EdgeLabelID$1", Automatic, Scaled[1/2]],
DynamicLocation["VertexID$1", Automatic, {Left, Bottom}],
DynamicLocation["VertexID$1", Automatic, {Left, Top}],
DynamicLocation["EdgeLabelID$1", Automatic, Scaled[0.6]],
DynamicLocation["EdgeLabelID$3", Automatic, Scaled[0.3]],
DynamicLocation["EdgeLabelID$1", Automatic, Scaled[0.4]]}
This suggest you pretty much hit everything. Let's just do one last quick look:
LocatorPane[Dynamic@x,
Graphics[{
EdgeForm@Thick, FaceForm@None, Rectangle[BoxID -> "box"],
{Arrow[{Dynamic[x], #}], Red,
Text[HoldForm[#], Offset[{1, RandomInteger[{-20, 0}]}, #]]} & /@
DeleteDuplicatesBy[
Reverse@$specs, {#[[2]], Head[#[[3]]]} &] /. s_String -> "box"
}, PlotRange -> 2]]
Sorry about how tough that is to read. In any case, the only thing you didn't mention (I think) was the Automatic | None
difference. None
seems to mean the location within the parent primitive itself. Automatic
appears to mean the nearest position along the primitive's boundary.
So I did a scrape of all the GraphicsBox
-es and this is what I got:
$gbDynamicLocationDump=CloudImport["https://www.wolframcloud.com/objects/b3m2a1/graphics_dynamic_location_dump.mx"];
Then let's see what sort of things these BoxID
s are assinged to:
Cases[Values@$gbDynamicLocationDump, _[___,
BoxID -> _, ___], [Infinity]] // DeleteDuplicatesBy[Head]
{TagBox[DiskBox[{0., 0.}, 0.0203996], "DynamicName",
BoxID -> "VertexID$1"]}
So we can see they always use a TagBox
. And, moreover, the DiskBox
is supported, just we need to specify it right:
LocatorPane[Dynamic@x,
Graphics[{
TagBox[DiskBox[{0, 0}, .1], "DynamicName", BoxID -> "box"],
Arrow[{Dynamic[x], DynamicLocation["box", Automatic]}]
},
PlotRange -> 1]
]
I don't know how to do this in top-level primitives, though, so if someone else could chime in with that it'd be great.
Here're some of the scraped up supported box styles:
Cases[Values@$gbScrape, _[___, BoxID -> _, ___], [Infinity]] //
Map[First] // Flatten // Map[Head] // DeleteDuplicates //
DeleteCases[
Hue | GrayLevel | Thickness | RGBColor | EdgeForm | Arrowheads]
{DiskBox, StyleBox, TagBox, InsetBox, ArrowBox, RectangleBox,
CircleBox, FilledCurveBox, DynamicBox, PointBox, PolygonBox, LineBox}
Which basically suggests everything is supported. Let's look at one example pulled directly from the scrape:
$edgeBox =
TagBox[StyleBox[
ArrowBox[
BezierCurveBox[{DynamicLocation["VertexID$1", Automatic,
Center], {0.16929929238168392`, -0.060834906748745296`},
{0.06631873896502918`, -0.24007829047418064`},
{-0.06588137300327365`, -0.2866769520693191`},
{-0.32874748131339104`, -0.01720980682360899`},
{-0.27888503732236586`, 0.11379416848298976`}, {-0.09714320225168427`,
0.21229843426110356`},
DynamicLocation["VertexID$1", Automatic, Center]},
SplineDegree -> 7]], Arrowheads[Medium], StripOnInput -> False],
"DynamicName", BoxID -> "EdgeLabelID$1"];
LocatorPane[Dynamic@x,
Graphics[{
$edgeBox,
FaceForm[None], EdgeForm[Black],
Rectangle[Dynamic[x], Dynamic[-x], BoxID -> "VertexID$1"],
Arrow[{Dynamic[x], DynamicLocation["EdgeLabelID$1", Automatic]}]
},
PlotRange -> 1]
]
It gives a sense of how powerful this can be
Here's just one last trick we can do:
LocatorPane[Dynamic@x,
Graphics[{$edgeBox, FaceForm[None], EdgeForm[Black],
Rectangle[Dynamic[x], Dynamic[-x], BoxID -> "VertexID$1"],
Arrow[{Dynamic[x],
Dynamic[
y = FE`Evaluate@DynamicLocation["EdgeLabelID$1", Automatic]
]}]}, PlotRange -> 1]]
It looks the same, but y
takes on this weird Perimeter
value that clearly the FE uses:
y
Perimeter[{{-0.351329, -0.306885}, {-0.351329, 0.612441}, {0.362441,
0.612441}, {0.362441, -0.306885}}, BezierCurve, Automatic,
{{0.344778, -0.12389}, {0.319816, -0.116786}, {0.295984, -0.113405},
{0.273094, -0.113086}, {0.25097, -0.115206}, {0.229447, -0.119181},
{0.208376, -0.12447}, {0.187628, -0.130578}, {0.167094, -0.137054},
{0.146685, -0.143494}, {0.126339, -0.149538}, {0.106013, -0.154875},
{0.0856889, -0.159237}, {0.0653717, -0.162401}, {0.0450872,
-0.164185}, {0.0248819, -0.164449}, {0.00482093, -0.16309},
{-0.0150137, -0.160042}, {-0.0345254, -0.155269}, {-0.0536057,
-0.148769}, {-0.0721368, -0.140563}, {-0.0899945, -0.130697},
{-0.107052, -0.119236}, {-0.123181, -0.106261}, {-0.13826,
-0.0918662}, {-0.152171, -0.0761518}, {-0.16481, -0.0592238},
{-0.176085, -0.0411881}, {-0.185923, -0.0221469}, {-0.194274,
-0.00219502}, {-0.201111, 0.0185843}, {-0.206439,
0.0401228}, {-0.210292, 0.0623712}, {-0.212744,
0.0853023}, {-0.213904, 0.108915}, {-0.213925,
0.133236}, {-0.213007, 0.158324}, {-0.211393,
0.184273}, {-0.209381, 0.211212}, {-0.207318,
0.239309}, {-0.205605, 0.268775}, {-0.204699,
0.299858}, {-0.205113, 0.332852}, {-0.207418,
0.368093}, {-0.212241, 0.405961}, {-0.220266,
0.446879}, {-0.232235, 0.491312}, {-0.248944,
0.539763}, {-0.271242, 0.592778}}, 0.00277778]
Note that despite the naming, this is not Perimeter
as if you try to evaluate you get an error. Rather this is something handled in the FE itself. But we can use it:
Quiet@Graphics[{
Arrow[{
{0, 0},
Perimeter[{{-0.3513294816166106`, -0.3068850371721661`},
{-0.3513294816166106`, 0.6124405927277219`}, {0.3624405927277219`,
0.6124405927277219`}, {0.3624405927277219`,
-0.3068850371721661`}}, BezierCurve,
Automatic, {{0.34477777777777785`, -0.12389020453117933`},
{0.3198158080521647`, -0.11678572885825483`}, {0.2959835781061064`,
-0.1134049116935066`}, {0.27309421626600816`, -0.11308626362062549`},
{0.25097018105818075`, -0.1152060089894028`}, {0.22944697314491685`,
-0.11918089795392665`}, {0.20837622351438345`,
-0.12447042298528227`}, {0.18762818539739076`, -0.1305784672904533`},
{0.1670936573840974`, -0.13705441256912174`}, {0.14668536521371014`,
-0.14349373354006323`}, {0.12633882971023885`,
-0.14953810666883527`}, {0.10601274833736543`,
-0.15487506052845523`}, {0.08568891784548616`, -0.1592371952247659`},
{0.06537172548398723`, -0.16240099831818505`}, {0.04508723625181282`,
-0.16418528467353688`}, {0.024881903659384697`,
-0.16444928766966216`}, {0.004820931474933732`,
-0.1630904292005044`}, {-0.015013686071698618`,
-0.1600417958993694`}, {-0.034525418154727594`,
-0.15526934901805498`}, {-0.05360571781450374`,
-0.1487688953925486`}, {-0.07213678154294184`,
-0.14056284692698964`}, {-0.08999452051924084`,
-0.13069679602759415`}, {-0.10705171602283764`, -0.119235934418238`},
{-0.12318133155053107`, -0.10626134276939753`},
{-0.13825995416472048`, -0.09186617857214373`},
{-0.1521713375996978`, -0.07615178968888592`},
{-0.16481001965293363`, -0.0592237810125657`},
{-0.17608498638829806`, -0.04118806166599455`},
{-0.18592335567815732`, -0.02214690017303507`},
{-0.1942740526112855`, -0.002195015033320563`}, {-0.2011114492935343`,
0.018584271867786717`}, {-0.20643894156819753`,
0.040122791582304446`}, {-0.21029243518301577`,
0.06237116672410781`}, {-0.21274371393075708`,
0.08530230496307703`}, {-0.2139036622903172`,
0.10891471995722232`}, {-0.2139253150952799`,
0.13323565229107964`}, {-0.2130067067568755`,
0.15832396298869578`}, {-0.21139349256828177`,
0.18427277216948668`}, {-0.20938131461720355`,
0.21121181541528777`}, {-0.2073178848336742`,
0.23930949041688565`}, {-0.20560475770002262`,
0.2687745664683503`}, {-0.2046987651499378`,
0.2998575293774527`}, {-0.20511308618358182`,
0.3328515343604829`}, {-0.20741792372567824`,
0.3680929394897675`}, {-0.21224076125353575`,
0.405961392262186`}, {-0.22026617172192897`,
0.44687944185699774`}, {-0.23223515131178862`,
0.4913116496512662`}, {-0.24894395052962903`,
0.5397631705612203`}, {-0.2712423751846815`,
0.592777777777778`}}, 0.002777777777777768`]
}]
}]
Answered by b3m2a1 on May 3, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP