Geographic Information Systems Asked by Igor Viana Souza on July 26, 2021
I’m new to the GEE platform.
How can I create a time series analysis (vegetation indices) of a particular shape?
would like to export in table form
var OLI = ('LANDSAT/LC08/C01/T1_RT_TOA');
//lOCALIZAÇÃO
var shp = ee.FeatureCollection(table);
// DEFINIÇÃO DO CENTRO DA ÁREA DE ESTUDO
Map.centerObject(shp);
// SELEÇÃO IMAGEM LANDSAT EM FUNÇÃO DO TEMPO E LOCALIZAÇÃO
var imagery = ee.ImageCollection(OLI)
var collection = ee.ImageCollection(imagery
.filterMetadata('CLOUD_COVER','less_than',3)
.filterDate('2015-01-01','2019-09-17')
.filterBounds(shp));
// ADICIONANDO AS IMAGENS CLIPADAS NO CONSOLE DIREITO
print ("Coleção de Imagens clipadas: ", collection);
// MOSAICO E CLIP DA IMAGEM
var clipimagem = collection.mosaic().clip(shp);
// ADICIONANDO AS IMAGENS CLIPADAS NO CONSOLE DIREITO
print("Imagens Cor verdadeira: ", clipimagem);
//------------------ CALCULOS ÍNDICES DE VEGETAÇÃO ---------------------------
// Use the normalizedDifference(A, B) to compute (A - B) / (A + B)
var ndvi = clipimagem.normalizedDifference(['B5', 'B4']);
// Use the NBR (A, B) to compute (A - B) / (A + B)
var nbr = clipimagem.normalizedDifference(['B5', 'B7']);
var evi = clipimagem.expression(
'2.5 * (nir - red) / (nir + 6 * red - 7.5 * blue + 1)',
{
red: clipimagem.select('B4'), // 620-670nm, RED
nir: clipimagem.select('B5'), // 841-876nm, NIR
blue: clipimagem.select('B2') // 459-479nm, BLUE
});
var savi = clipimagem.expression(
'2.0 * (nir - red) / (nir + red + 1.0)',
{
red: clipimagem.select('B4'), // 620-670nm, RED
nir: clipimagem.select('B5'), // 841-876nm, NIR
});
// ADICIONANDO LAYER AO MAPA
// Make a palette: a list of hex strings.
var palette = ['FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718',
'74A901', '66A000', '529400', '3E8601', '207401', '056201',
'004C00', '023B01', '012E01', '011D01', '011301'];
Map.addLayer(shp.draw({color: 'ffffff', strokeWidth: 5}), {},'Parque Estadual do Cantão');
Map.addLayer(clipimagem, {bands:'B5,B4,B3'}, 'FALSA COR');
Map.addLayer(ndvi, {min:0, max:1, palette: palette}, 'NDVI');
Map.addLayer(nbr, {min:0, max:1, palette: palette}, 'NBR');
Map.addLayer(evi, {min:0, max:1, palette: palette}, 'EVI');
Map.addLayer(savi, {min:0, max:1, palette: palette}, 'SAVI');
You will have to make a long addition to your script to extract not from the mosaic, but from a collection for each of your indices.
Then you reduce the images with .reduceregion()
and add it as a property to a feature.
After that, you create a collection of the feature so that it can be exported to a csv.
//////////////////
// Export index results as a timeseries
/////////////////
/////////////////////////////////////////////////
// Create Clip collection function
//////////////////////////////////////////////
var clipToShp = function(image){
var clipped = image.clip(shp)
return clipped
}
// clip all images to this shp
var clippedCollection = collection.map(clipToShp)
// Create NDVI of collection function
var ndviOfCollection = function(image){
var ndviOfImage = image.normalizedDifference(['B5', 'B4']);
return ndviOfImage.copyProperties(image)
}
// create a collection of the NDVI
var ndviCollection = clippedCollection.map(ndviOfCollection)
// Create NBR of collection function
var nbrOfCollection = function(image){
var nbrOfImage = image.normalizedDifference(['B5', 'B7']);
return nbrOfImage.copyProperties(image)
}
// create a collection of the NBR
var nbrCollection = clippedCollection.map(nbrOfCollection)
// Create EVI of collection function
var eviOfCollection = function(image){
var eviOfImage = image.expression(
'2.5 * (nir - red) / (nir + 6 * red - 7.5 * blue + 1)',
{
red: image.select('B4'), // 620-670nm, RED
nir: image.select('B5'), // 841-876nm, NIR
blue: image.select('B2') // 459-479nm, BLUE
});
return eviOfImage.copyProperties(image)
}
// create a collection of the EVI
var eviCollection = clippedCollection.map(eviOfCollection)
// Create SAVI of collection function
var saviOfCollection = function(image){
var saviOfImage = image.expression(
'2.0 * (nir - red) / (nir + red + 1.0)',
{
red: image.select('B4'), // 620-670nm, RED
nir: image.select('B5'), // 841-876nm, NIR
});
return saviOfImage.copyProperties(image)
}
// create a collection of the SAVI
var saviCollection = clippedCollection.map(saviOfCollection)
// create a feature so we can iterate through it later
var fet = ee.Feature(shp)
// add the NDVItimeseries to the SHP
var addPropNDVI = function(img, feature){
var newf = ee.Feature(feature)
var featureNDVI = ee.Number(img.reduceRegion(ee.Reducer.mean(),shp))
var theDate = img.get("DATE_ACQUIRED")//.format("Y-M-D");
var ndviDate = ee.String("NDVI_").cat(theDate)
return ee.Feature(newf.set(ndviDate,featureNDVI));
}
var featNDVI = ee.Feature(ndviCollection.iterate(addPropNDVI, fet));
// add the NBRtimeseries to the SHP
var addPropNBR = function(img, feature){
var newf = ee.Feature(feature)
var featureNBR = ee.Number(img.reduceRegion(ee.Reducer.mean(),shp))
var theDate = img.get("DATE_ACQUIRED")
var nbrDate = ee.String("NBR_").cat(theDate)
return ee.Feature(newf.set(nbrDate,featureNBR));
}
var featNBR = ee.Feature(nbrCollection.iterate(addPropNBR, fet));
// add the EVI timeseries to the SHP
var addPropEVI = function(img, feature){
var newf = ee.Feature(feature)
var featureEVI = ee.Number(img.reduceRegion(ee.Reducer.mean(),shp))
var theDate = img.get("DATE_ACQUIRED")
var eviDate = ee.String("EVI_").cat(theDate)
return ee.Feature(newf.set(eviDate,featureEVI));
}
var featEVI = ee.Feature(eviCollection.iterate(addPropEVI, fet));
// add the SAVI timeseries to the SHP
var addPropSAVI = function(img, feature){
var newf = ee.Feature(feature)
var featureSAVI = ee.Number(img.reduceRegion(ee.Reducer.mean(),shp))
var theDate = img.get("DATE_ACQUIRED")
var saviDate = ee.String("SAVI_").cat(theDate)
return ee.Feature(newf.set(saviDate,featureSAVI));
}
var featSAVI = ee.Feature(saviCollection.iterate(addPropSAVI, fet));
//Make a collection of the features
var featureCollectionNDVI = ee.FeatureCollection([
featNDVI])//,
var featureCollectionNBR = ee.FeatureCollection([
featNBR])
var featureCollectionEVI = ee.FeatureCollection([
featEVI])
var featureCollectionSAVI = ee.FeatureCollection([
featSAVI])
// Export Indices
Export.table.toDrive({
collection: featureCollectionNDVI,
description: "NDVI_Export",
folder:"Time_Series",
fileFormat:"CSV"
})
Export.table.toDrive({
collection: featureCollectionNBR,
description: "NBR_Export",
folder:"Time_Series",
fileFormat:"CSV"
})
Export.table.toDrive({
collection: featureCollectionEVI,
description: "EVI_Export",
folder:"Time_Series",
fileFormat:"CSV"
})
Export.table.toDrive({
collection: featureCollectionSAVI,
description: "SAVI_Export",
folder:"Time_Series",
fileFormat:"CSV"
})
======================
Ah, I missed something.
In your question you mention:
How can I create a time series analysis (vegetation indices) of a particular shape?
When testing it, as I don't have access to your "table" I just drew a polygon, and used that as "shp". But I just noticed that your "table" is actually a Feature Collection.
If it is just one polygon that you have in your collection, you can change your early code to this.
var shp = ee.FeatureCollection(table).first().geometry();
Edit code above to change to a geometry
If it is actually a collection, you will have to modify the functions to be mapped to a collection, rather than a feature.
Answered by Sean Roulet on July 26, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP