Data Science Asked by Subh2608 on May 1, 2021
We have followed the following steps:
from sagemaker.tensorflow import TensorFlowModel
sagemaker_model = TensorFlowModel(model_data = tarS3Path + 'model{}.tar.gz'.format(1),
role = role, framework_version='1.13',
sagemaker_session = sagemaker_session)
predictor = sagemaker_model.deploy(initial_instance_count=1,
instance_type='ml.m4.xlarge')
predictor.predict(data.values[:,0:])
The output was:
{‘predictions’: [[153.55], [79.8196], [45.2843]]}
Now the problem is that we cannot use 5 different deploy statements and create 5 different endpoints for 5 models. For this we followed two approaches:
i) Used MultiDataModal of Sagemaker
from sagemaker.multidatamodel import MultiDataModel
sagemaker_model1 = MultiDataModel(name = "laneMultiModels", model_data_prefix = tarS3Path,
model=sagemaker_model, #This is the same sagemaker_model which is trained above
#role = role, #framework_version='1.13',
sagemaker_session = sagemaker_session)
predictor = sagemaker_model1.deploy(initial_instance_count=1,
instance_type='ml.m4.xlarge')
predictor.predict(data.values[:,0:], target_model='model{}.tar.gz'.format(1))
Here we got an error at deploy stage which is as follows:
An error occurred (ValidationException) when calling the CreateModel operation: Your Ecr Image 763104351884.dkr.ecr.us-east-2.amazonaws.com/tensorflow-inference:1.13-cpu does not contain required com.amazonaws.sagemaker.capabilities.multi-models=true Docker label(s).
ii) Created endpoint manually
import boto3
import botocore
import sagemaker
sm_client = boto3.client('sagemaker')
image = sagemaker.image_uris.retrieve('knn','us-east-2')
container = {
"Image": image,
"ModelDataUrl": tarS3Path,
"Mode": "MultiModel"
}
# Note if I replace "knn" by tensorflow it gives an error at this stage itself
response = sm_client.create_model(
ModelName = 'multiple-tar-models',
ExecutionRoleArn = role,
Containers = [container])
response = sm_client.create_endpoint_config(
EndpointConfigName = 'multiple-tar-models-endpointconfig',
ProductionVariants=[{
'InstanceType': 'ml.t2.medium',
'InitialInstanceCount': 1,
'InitialVariantWeight': 1,
'ModelName': 'multiple-tar-models',
'VariantName': 'AllTraffic'}])
response = sm_client.create_endpoint(
EndpointName = 'tarmodels-endpoint',
EndpointConfigName = 'multiple-tar-models-endpointconfig')
Endpoint couldn’t be created in this approach as well.
I also have been looking for answers regarding this before, and after several days of trying with my friend, we manage to do it. I attach some code snippet that we use, you may modify it according to your use case
image = '763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-inference:2.2.0-cpu'
container = {
'Image': image,
'ModelDataUrl': model_data_location,
'Mode': 'MultiModel'
}
sagemaker_client = boto3.client('sagemaker')
# Create Model
response = sagemaker_client.create_model(
ModelName = model_name,
ExecutionRoleArn = role,
Containers = [container])
# Create Endpoint Configuration
response = sagemaker_client.create_endpoint_config(
EndpointConfigName = endpoint_configuration_name,
ProductionVariants=[{
'InstanceType': 'ml.t2.medium',
'InitialInstanceCount': 1,
'InitialVariantWeight': 1,
'ModelName': model_name,
'VariantName': 'AllTraffic'}])
# Create Endpoint
response = sagemaker_client.create_endpoint(
EndpointName = endpoint_name,
EndpointConfigName = endpoint_configuration_name)
# Invoke Endpoint
sagemaker_runtime_client = boto3.client('sagemaker-runtime')
content_type = "application/json" # The MIME type of the input data in the request body.
accept = "application/json" # The desired MIME type of the inference in the response.
payload = json.dumps({"instances": [1.0, 2.0, 5.0]}) # Payload for inference.
target_model = 'model1.tar.gz'
response = sagemaker_runtime_client.invoke_endpoint(
EndpointName=endpoint_name,
ContentType=content_type,
Accept=accept,
Body=payload,
TargetModel=target_model,
)
response
also, make sure your model tar.gz
files have this structure
└── model1.tar.gz
└── <version number>
├── saved_model.pb
└── variables
└── ...
Correct answer by Kevin Yauris on May 1, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP