Cryptography Asked by mppub on March 7, 2021
Could someone please provide the math proof;
$$ ((g^a)bmod p)^b bmod p = ((g^b)bmod p)^a bmod p $$
Let $g^a = x bmod p$ then $k in mathbb{Z}$; $$g^a = x + k cdot p$$ Now take $b$-th power of both sides and $bmod p$.
begin{align} (g^a)^b &= (x + k cdot p)^b pmod p\ g^{ab} &= x^b + x^{b-1}(k cdot p) + cdots + (k cdot p)^b pmod p\ g^{ab} &= x^b pmod p end{align}
Similarly;
Let $g^b = y bmod p$ then $g^b = y + ell cdot p$ now take $a$-th power and $bmod p$ and arrive
$$g^{ab} = y^a pmod p$$
Therefore $$x^b = y^a = g^{ab} pmod p$$
Answered by kelalaka on March 7, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP