TransWikia.com

Looking to build the Mathematical proof that $ Var(hat{y}) = sigma^2textbf{H} $

Cross Validated Asked by Seve Martinez on November 2, 2021

I’m looking to build the proof that

$$
Var(hat{y}) = sigma^2textbf{H}
$$

So I was going down this road and seem to have gotten a bit confused:
$$
Var(hat{y}) = sigma^2textbf{X} (textbf{X}’textbf{X})^{-1}textbf{X}’\
mathrm{Var}(hat{y}) = mathrm{var}(Xhat{beta})\\
= Var[X(X’X)^{-1} X’] var(y)
$$

Am I on the right track or where did I go wrong?

2 Answers

Suppose the estimated parameters are: $$hat{beta}=(X^TX)^{-1}X^Ty$$ therefore, $$hat{y}=Xhat{beta}=X(X^TX)^{-1}X^Ty$$ since $Var(AX)=AVar(X)A^T$, we can have: begin{align} Var(hat{y})&=Var(X(X^TX)^{-1}X^Ty)\ &=X(X^TX)^{-1}X^TVar(y)(X(X^TX)^{-1}X^T)^T\ &={sigma}^2X(X^TX)^{-1}X^T(X(X^TX)^{-1}X^T)\ &={sigma}^2Xbbox[5px,#ffd,border:0.25px solid green]{(X^TX)^{-1}X^TX}(X^TX)^{-1}X^T\ &={sigma}^2IX(X^TX)^{-1}X^T\ &={sigma}^2H end{align} given $(X^TX)$ is Idempotent, $(AX)^T=X^TA^T$ and $H=X(X^TX)^{-1}X^T$.

Answered by Linxing Yao on November 2, 2021

Moving a linear constant factor out of the variance involves multiplying by that factor twice. So $mathrm{var}[2Y] = 4mathrm{var}[Y]$, and $$ mathrm{var}[X(X'X)^{-1}X'Y]= X(X'X)^{-1}X'mathrm{var}[Y]X(X'X)^{-1}X'$$

Answered by Thomas Lumley on November 2, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP