Cross Validated Asked by New on January 4, 2021
I want to test if more women are graduating from high school than men, the last ten years. I want to use percentages, not raw data. (2007-2017 percentages of women who graduated from high schools versus men)
And I also want to test if proportionally more women than men are graduating from high school than university. I can not use median because more people graduate from high schools than universities. I can use percentages (2007-2017 percentages of women who graduated from high school versus university)
What tests are the right ones?
Consider total number of data points to be $N$.
$p_w$ = proportion of women graduating in Sample.
$p_m$ = 1- $p_w$ = proportion of men graduating in Sample.
$sigma_{sample}$ = Standard deviation of the sample data = $sqrt{p_w*p_m}$
$sigma_{pop}$ = Standard deviation of the population = $frac{sigma_{sample}}{sqrt{N}}$
The null Hypothesis $H_0$ : $p_{w} = p_m$
The null Hypothesis $H_A$ : $p_{w} > p_m$
$Z = frac{p_w-p_m}{sigma_{pop}}$
If $abs(Z)$ value is greater than 2, then the percent of women is greater than men.
$N$ = Total number of women
$p_h$ = percent of women in high school
$p_u$ = percent of women in university
Answered by user3808268 on January 4, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP