TransWikia.com

Does 'Recombine' work for this geometry in Gmsh?

Computational Science Asked on October 3, 2021

I am struggling to recombine the remaining triangular cells into unstructured quadrangular ones in this geometry using Gmsh. Do I need to add auxiliary lines somewhere or do some geometries just don’t allow these type of cells?

enter image description here

The .geo script:

// Gmsh project created on Wed Jul 29 13:32:48 2020
SetFactory("OpenCASCADE");
//+
Point(1) = {-4.1, -2.7, 0, 1.0};
//+
Point(2) = {-3.6, -2.7, 0, 1.0};
//+
Point(3) = {3.6, -2.7, 0, 1.0};
//+
Point(4) = {4.1, -2.7, 0, 1.0};
//+
Point(5) = {4.1, -2.2, 0, 1.0};
//+
Point(6) = {4.1, 2.2, 0, 1.0};
//+
Point(7) = {4.1, 2.7, 0, 1.0};
//+
Point(8) = {3.6, 2.7, 0, 1.0};
//+
Point(9) = {-3.6, 2.7, 0, 1.0};
//+
Point(10) = {-4.1, 2.7, 0, 1.0};
//+
Point(11) = {-4.1, 2.2, 0, 1.0};
//+
Point(12) = {-4.1, -2.2, 0, 1.0};
//+
Point(13) = {-3.6, -2.2, 0, 1.0};
//+
Point(14) = {3.6, -2.2, 0, 1.0};
//+
Point(15) = {3.6, 2.2, 0, 1.0};
//+
Point(16) = {-3.6, 2.2, 0, 1.0};
//+
Line(1) = {1, 2};
//+
Line(2) = {2, 3};
//+
Line(3) = {3, 4};
//+
Line(4) = {4, 5};
//+
Line(5) = {5, 6};
//+
Line(6) = {6, 7};
//+
Line(7) = {7, 8};
//+
Line(8) = {8, 9};
//+
Line(9) = {9, 10};
//+
Line(10) = {10, 11};
//+
Line(11) = {11, 12};
//+
Line(12) = {12, 1};
//+
Line(13) = {13, 14};
//+
Line(14) = {14, 15};
//+
Line(15) = {15, 16};
//+
Line(16) = {16, 13};
//+
Line(17) = {12, 13};
//+
Line(18) = {13, 2};
//+
Line(19) = {14, 3};
//+
Line(20) = {14, 5};
//+
Line(21) = {15, 6};
//+
Line(22) = {15, 8};
//+
Line(23) = {16, 11};
//+
Line(24) = {16, 9};
//+
Point(17) = {-2.1, -0.7, 0, 1.0};
//+
Point(18) = {2.1, -0.7, 0, 1.0};
//+
Point(19) = {2.1, 0.7, 0, 1.0};
//+
Point(20) = {-2.1, 0.7, 0, 1.0};
//+
Point(21) = {-2.1, 0.5, 0, 1.0};
//+
Point(22) = {1.9, 0.5, 0, 1.0};
//+
Point(23) = {1.9, -0.5, 0, 1.0};
//+
Point(24) = {-2.1, -0.5, 0, 1.0};
//+
Line(25) = {17, 18};
//+
Line(26) = {18, 19};
//+
Line(27) = {19, 20};
//+
Line(28) = {20, 21};
//+
Line(29) = {21, 22};
//+
Line(30) = {22, 23};
//+
Line(31) = {23, 24};
//+
Line(32) = {24, 17};
//+
Curve Loop(1) = {11, 17, -16, 23};
//+
Plane Surface(1) = {1};
//+
Curve Loop(2) = {12, 1, -18, -17};
//+
Plane Surface(2) = {2};
//+
Curve Loop(3) = {2, -19, -13, 18};
//+
Plane Surface(3) = {3};
//+
Curve Loop(4) = {3, 4, -20, 19};
//+
Plane Surface(4) = {4};
//+
Curve Loop(5) = {14, 21, -5, -20};
//+
Curve Loop(6) = {14, 21, -5, -20};
//+
Plane Surface(5) = {6};
//+
Curve Loop(7) = {21, 6, 7, -22};
//+
Curve Loop(8) = {22, -7, -6, -21};
//+
Plane Surface(6) = {8};
//+
Curve Loop(9) = {15, 24, -8, -22};
//+
Curve Loop(10) = {27, 28, 29, 30, 31, 32, 25, 26};
//+
Curve Loop(11) = {15, 24, -8, -22};
//+
Plane Surface(7) = {11};
//+
Curve Loop(12) = {23, -10, -9, -24};
//+
Plane Surface(8) = {12};
//+
Curve Loop(13) = {16, 13, 14, 15};
//+
Curve Loop(14) = {27, 28, 29, 30, 31, 32, 25, 26};
//+
Plane Surface(9) = {13, 14};
//+
Transfinite Surface {1, 2, 3, 4, 5, 6, 7, 8};
//+
Transfinite Curve {12, 18, 1, 17, 19, 3, 4, 20, 21, 22, 6, 7, 23, 9, 10, 24} = 6 Using Progression 1;
//+
Transfinite Curve {13, 2, 16, 11, 15, 8, 14, 5} = 35 Using Progression 1;
//+
Recombine Surface {1, 2, 3, 4, 5, 6, 7, 8};

One Answer

To get the triangles in the last surface Recombined into quadrilaterals, you simply need to add the surface #9 into the last line:

Recombine Surface {1, 2, 3, 4, 5, 6, 7, 8, 9};

This will result in:

enter image description here

Also, you might be interested in the

Mesh.RecombineAll = 1;

option. And playing with the 2-D Recombination algorithm via Mesh.RecombinationAlgorithm might allow you to achieve elements that fit your purpose better (0: simple, 1: blossom, 2: simple full-quad, 3: blossom full-quad).

Unfortunately, you cannot make the surface #9 Transfinite as well that easily (which would have enabled structured quadrilateral mesh).

The only solution I am aware of is to manually split #9 into several simple 4-corner surfaces.

However, the screenshot above seems to satisfy the requirements you have specified.

Correct answer by Anton Menshov on October 3, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP