Bioinformatics Asked on February 8, 2021
I have a read count data (RNAseq) and want to perform quantile normalization. Could you please help me how to do it. I tried some scripts in R but it didn’t work. I want the result output in matrix form.
gene_id SRR896664 SRR896663 SRR896665
ENSG00000000003 46106 36353 40614
ENSG00000000005 198 399 1200
ENSG00000000419 40364 37769 40849
ENSG00000000457 18924 16211 16057
ENSG00000000460 31040 28888 29901
ENSG00000000938 200 0 394
ENSG00000000971 14935 14353 12522
The script which i tried is
data <- read.csv("testquantile.csv",header=T)
head(data)
rownames(data) <- data[,1]
data_mat <- data.matrix(data[,-1])
head(data_mat)
data_norm <- normalize.quantiles(m, copy = TRUE)
On google there are many tutorials about quantile normalzation, for example here. In that tutorial they made a function to calculate quantile normalization. Here an example with that function on your small data set.
data
gene_id SRR896664 SRR896663 SRR896665
1 ENSG00000000003 46106 36353 40614
2 ENSG00000000005 198 399 1200
3 ENSG00000000419 40364 37769 40849
4 ENSG00000000457 18924 16211 16057
5 ENSG00000000460 31040 28888 29901
6 ENSG00000000938 200 0 394
7 ENSG00000000971 14935 14353 12522
rownames(data) <- data$gene_id
quantile_normalisation <- function(df){
df_rank <- apply(df,2,rank,ties.method="min")
df_sorted <- data.frame(apply(df, 2, sort))
df_mean <- apply(df_sorted, 1, mean)
index_to_mean <- function(my_index, my_mean){
return(my_mean[my_index])
}
df_final <- apply(df_rank, 2, index_to_mean, my_mean=df_mean)
rownames(df_final) <- rownames(df)
return(df_final)
}
new_data <- quantile_normalisation(data[,2:4])
new_data
SRR896664 SRR896663 SRR896665
ENSG00000000003 41574.6667 39110.3333 39110.3333
ENSG00000000005 197.3333 599.6667 599.6667
ENSG00000000419 39110.3333 41574.6667 41574.6667
ENSG00000000457 17064.0000 17064.0000 17064.0000
ENSG00000000460 29943.0000 29943.0000 29943.0000
ENSG00000000938 599.6667 197.3333 197.3333
ENSG00000000971 13936.6667 13936.6667 13936.6667
boxplot(data[,2:4])
boxplot(new_data)
Answered by benn on February 8, 2021
https://www.rdocumentation.org/packages/limma/versions/3.28.14/topics/normalizeQuantiles
is a possibility.
Another popular method is https://www.rdocumentation.org/packages/preprocessCore/versions/1.34.0/topics/normalize.quantiles.
library(preprocessCore)
normalize.quantiles
Answered by SmallChess on February 8, 2021
Ma be CQN from Bioconductor will be useful, though it doesn't perform just quantile normalisation.
Answered by geek_y on February 8, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP